UCLouvain

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Plan

- Electroweak interaction
 - Beta decay and Fermi theory
 - Parity violation
 - Weak algebra and neutral currents
 - Electroweak theory
- Spontaneous symmetry breaking
 - U(1)
 - SM
 - Fermions masses
- Effective field theory
 - Introduction
 - Operators and interactions
 - Interference

Exercices in purple by hand and in MadGraph

Connection to pheno along the way

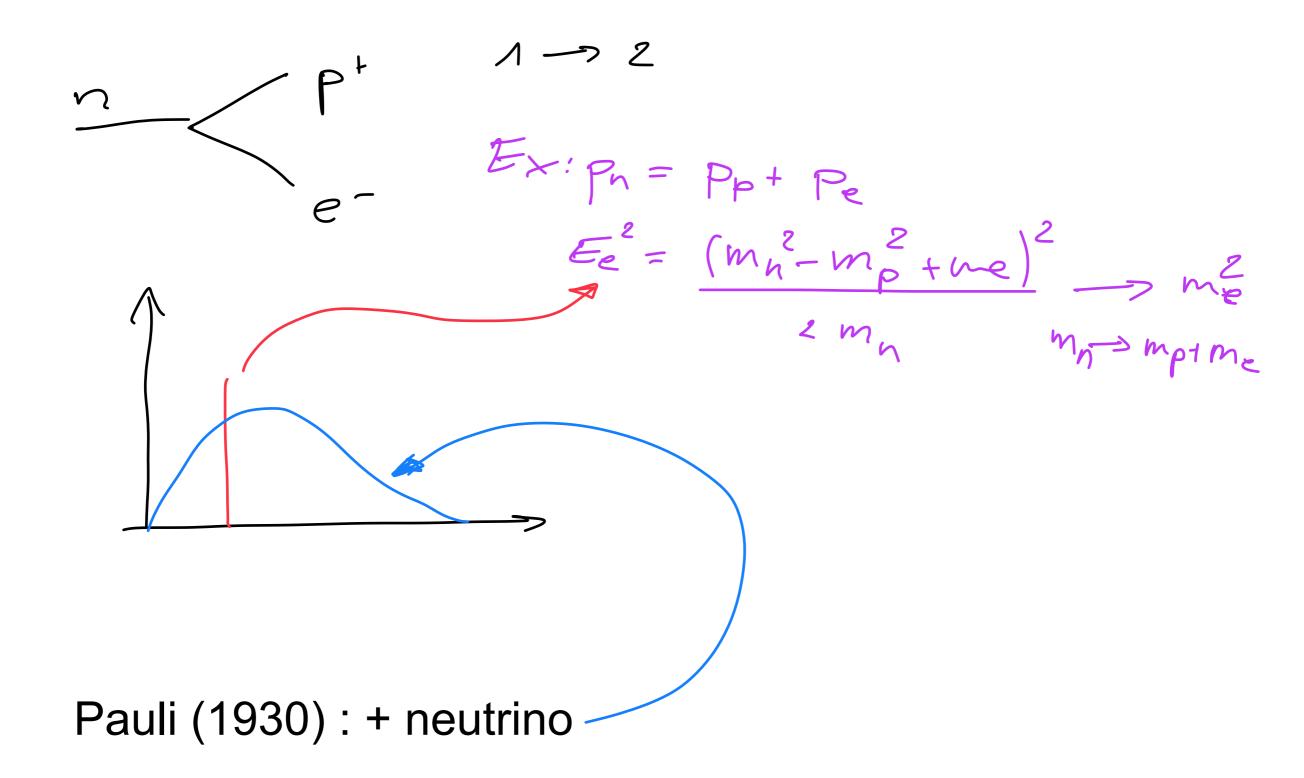
Questions

- Does the weak interaction explain why they are rocky planets?
- Is the proportionality of the Higgs to fermion couplings to their masses due to
 - Parity
 - Gauge invariance
 - Spontaneous symmetry breaking
- Why are they so many muons produced by CR in the atmosphere?

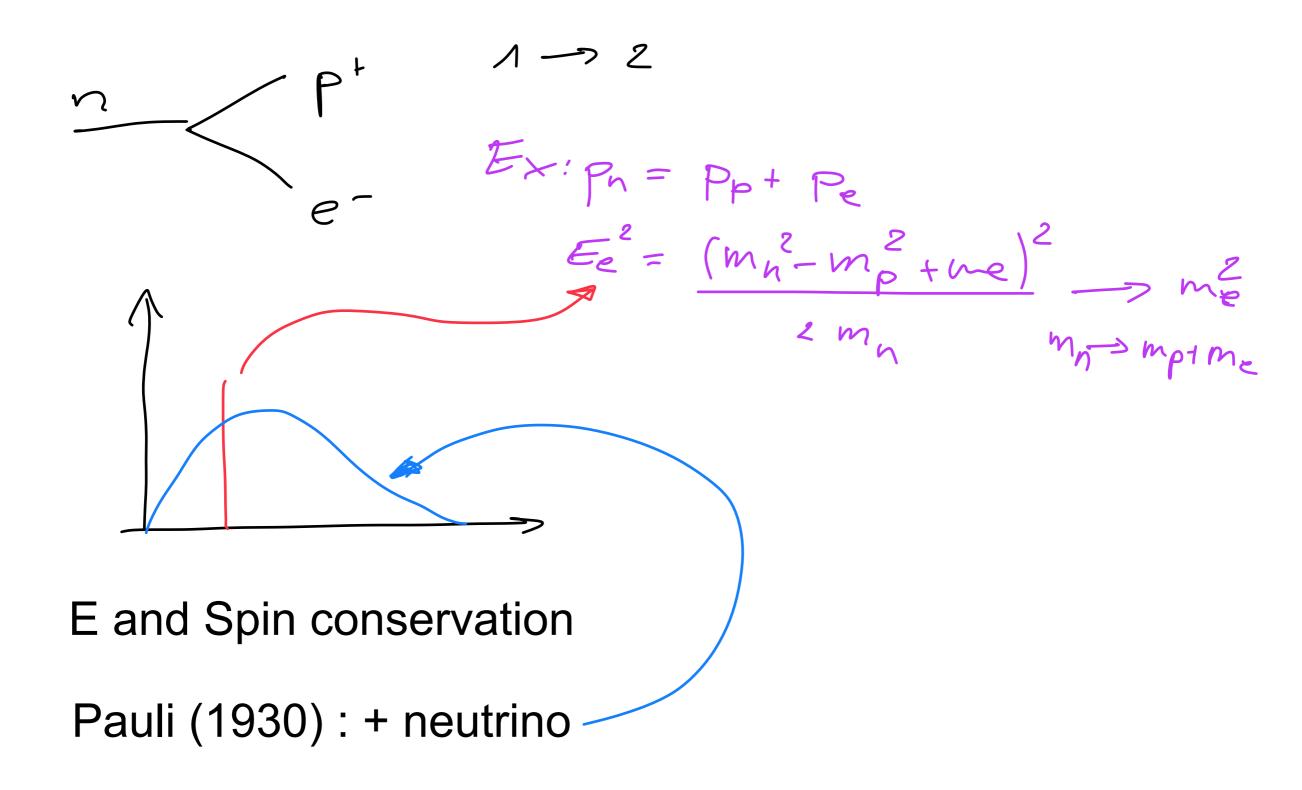
- Why is the proton stable and not the neutron?
- Can I predict the W and z masses from low energy data?

Electroweak interaction

Beta decay



Beta decay



Fermi theory (1933)

Current x current $\mathscr{L}_F \propto G_F J^{\mu}_{had} \times J_{lep\,\mu}$ $\bar{e}\Gamma_{\mu}\nu$ $\bar{p}\Gamma'$ $\Gamma_{\mu} = ?\gamma_{\mu}$ n destroyed and p, e, ν created 2 2 $\mathscr{L}_F \propto G_F(\bar{u}\gamma^{\mu}d) \times (\bar{e}\gamma_{\mu}\nu)$

Refused by Nature

Fermi and dimension

Dimensionless
$$S = \int d^4x \mathcal{L}$$

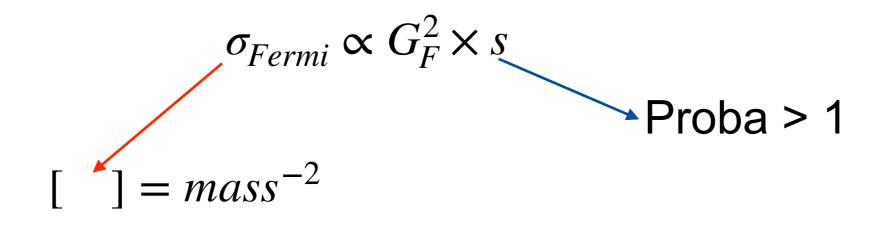
 $[] = mass^{-4}$ $[] = mass^4$

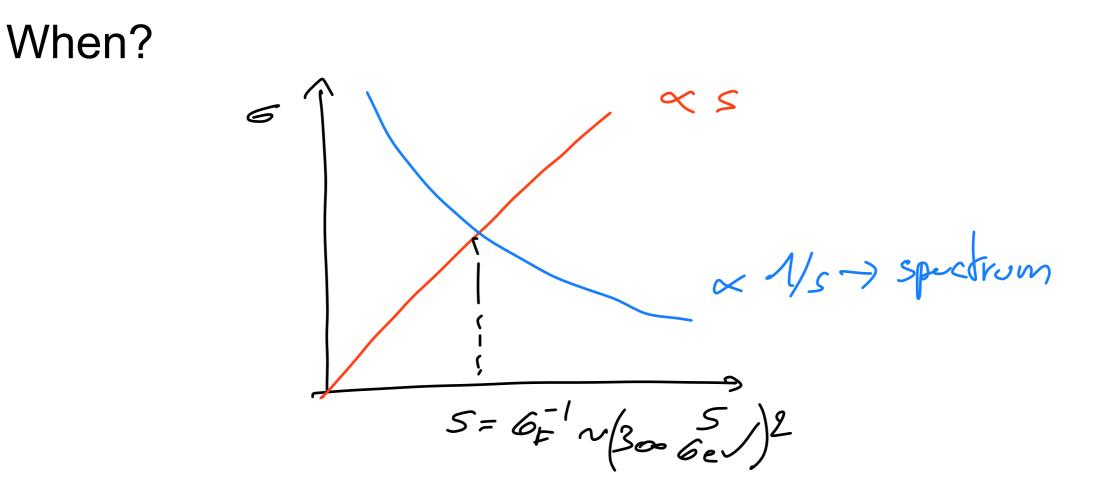
$$\mathscr{L}_{Dirac} \ni \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi, m \bar{\psi} \psi$$

$$[\downarrow] = mass^{3/2}$$

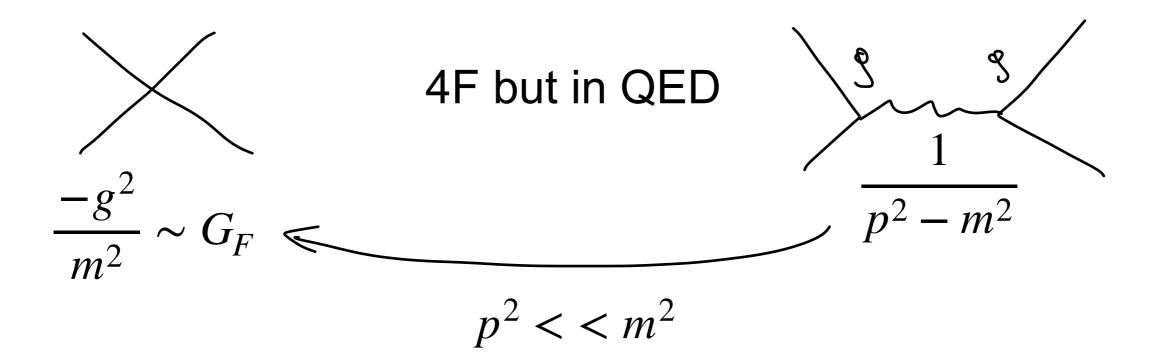
$$\left[\bar{\psi}\gamma^{\mu}\psi\bar{\psi}\gamma_{\mu}\psi\right] = mass^{6} \rightarrow [G_{F}] = mass^{-2}$$

Unitarity violation





Unitarity violation

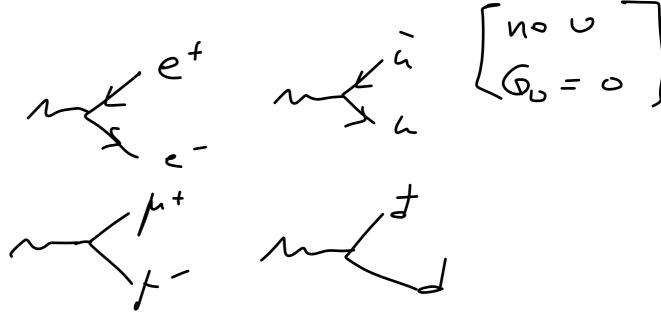


But in QED

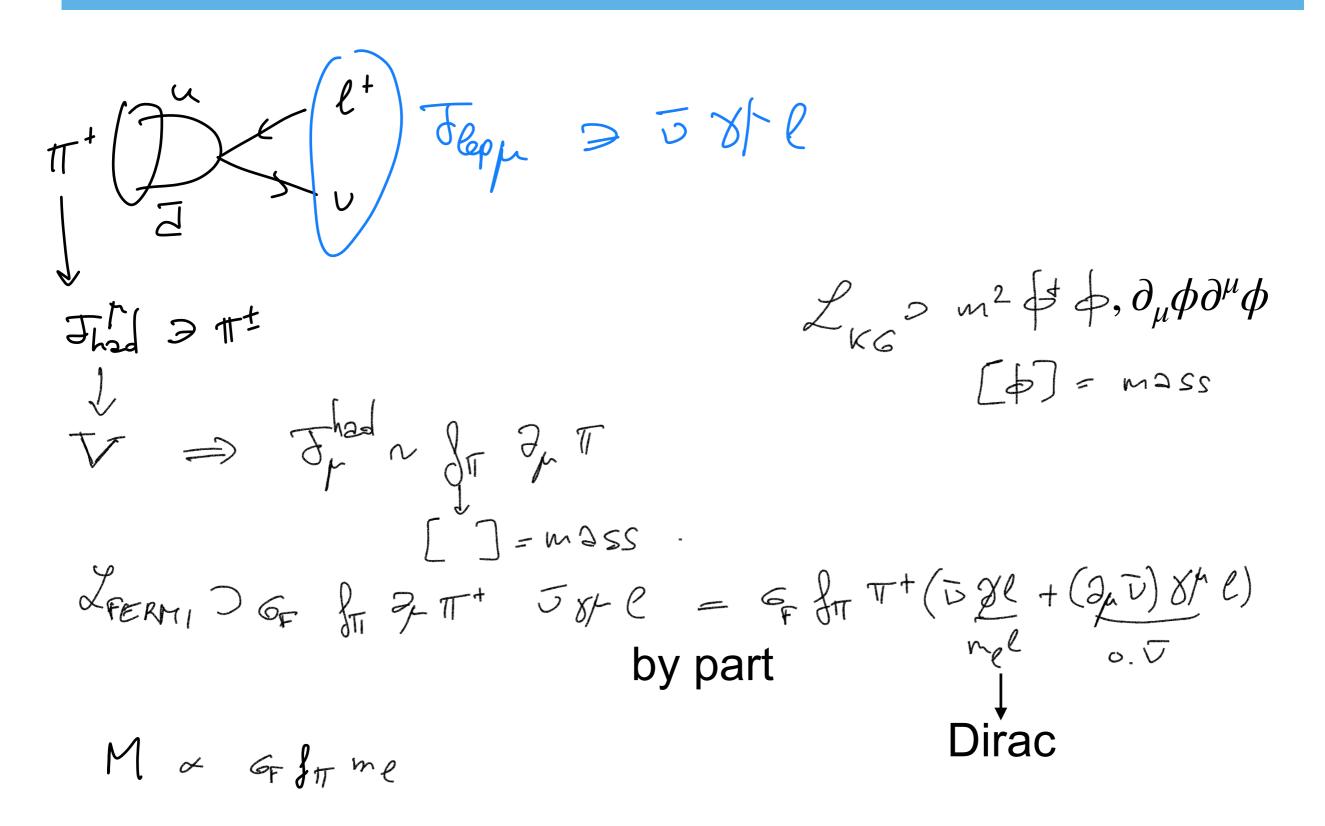
- Always the same fermion
- Massless gauge boson

$$\bar{\psi}\gamma^{\mu}D_{\mu}\psi$$

$$\overset{}{\partial}_{\mu}-iqA_{\mu}$$



Pion decay



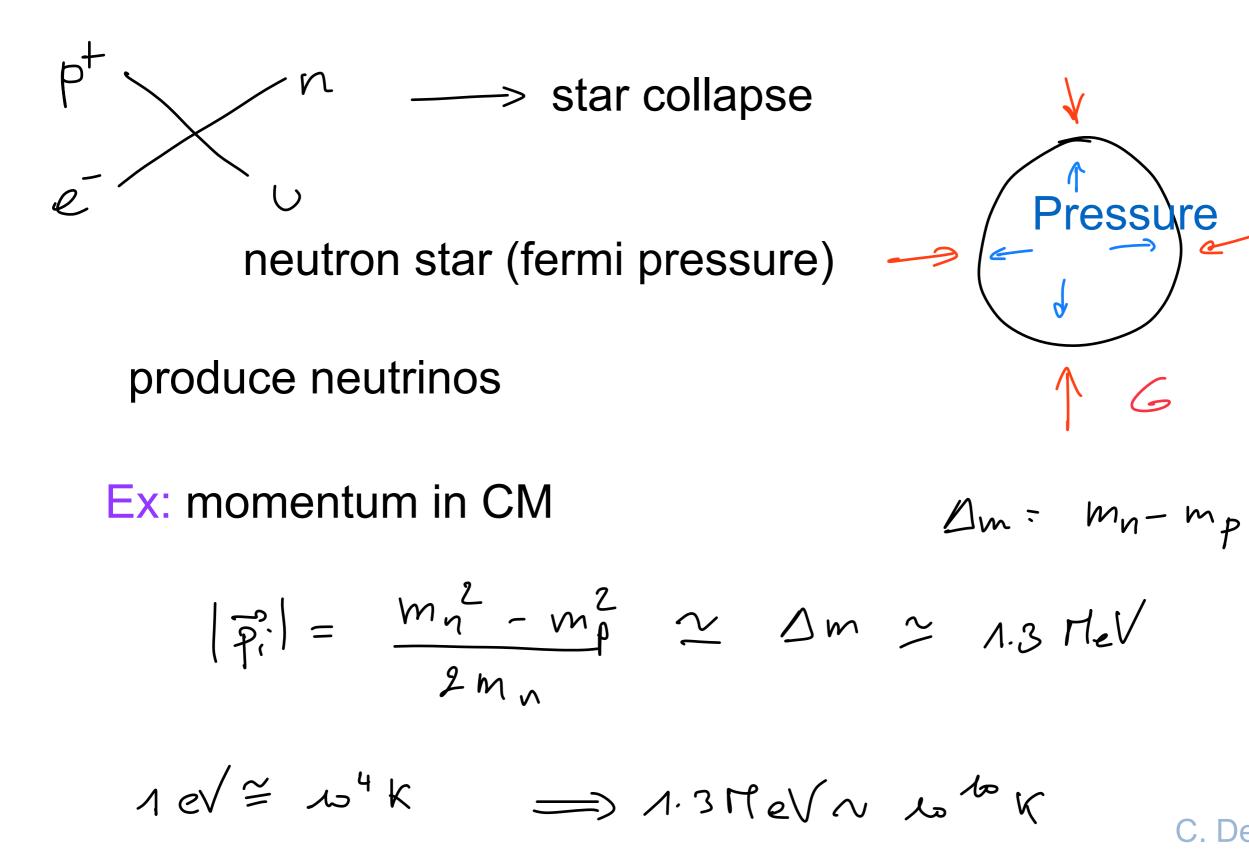
Pion decay

$$\frac{\operatorname{Br}(\pi \to e \upsilon)}{\operatorname{Br}(\pi \to \mu \upsilon)} \sim \frac{m_e^2}{m_\mu^2 (1 - \frac{m_\mu^2}{m_f^2})^2} \sim 1.23 \, lo^4$$

https://pdg.lbl.gov/

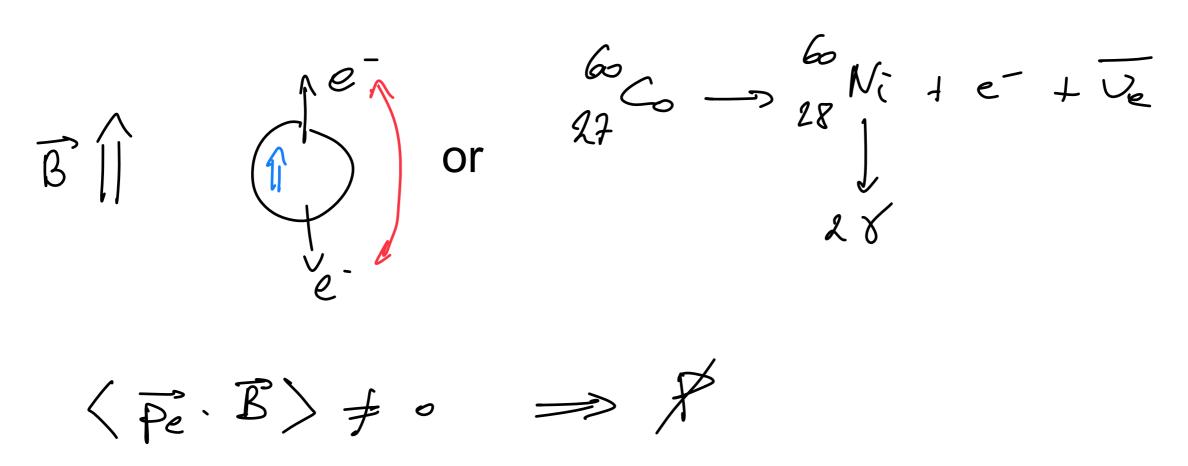
Because V interaction

Inverse beta decay



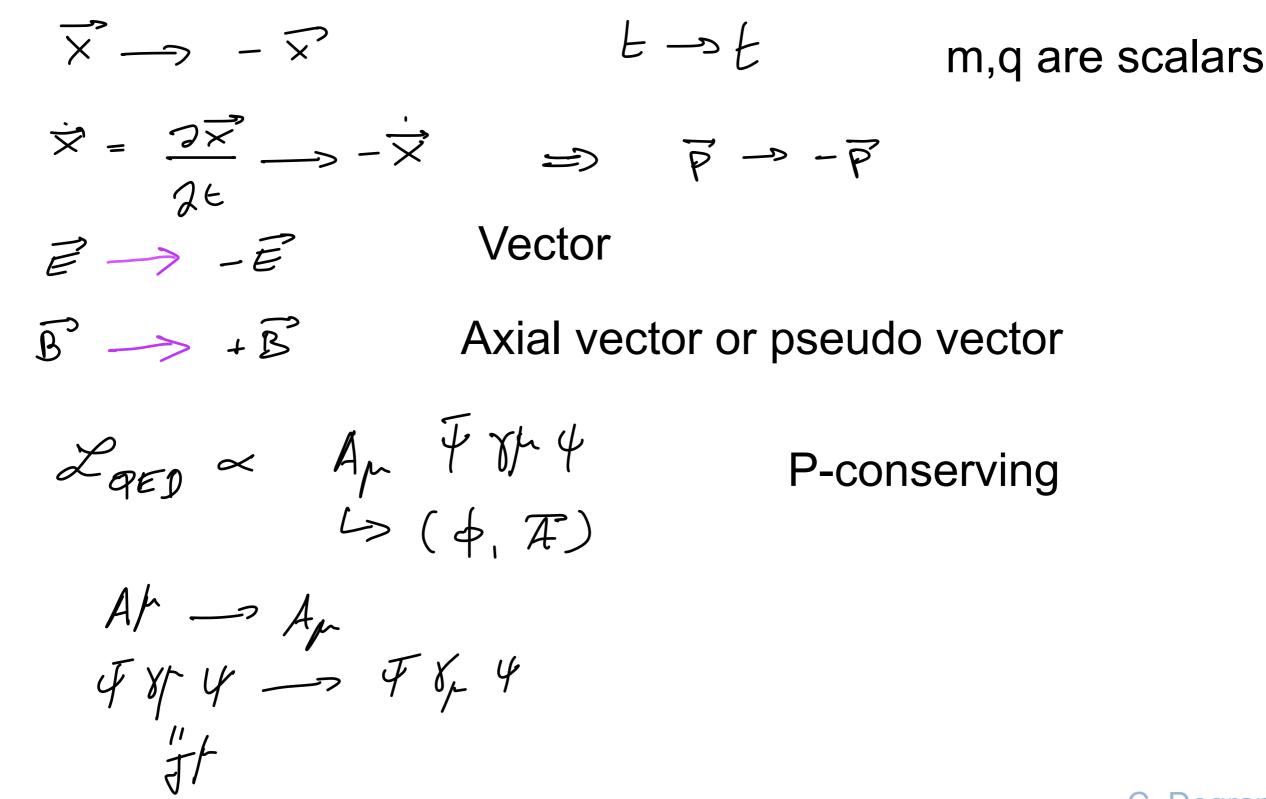
Parity violation

Exp 1957 Wu

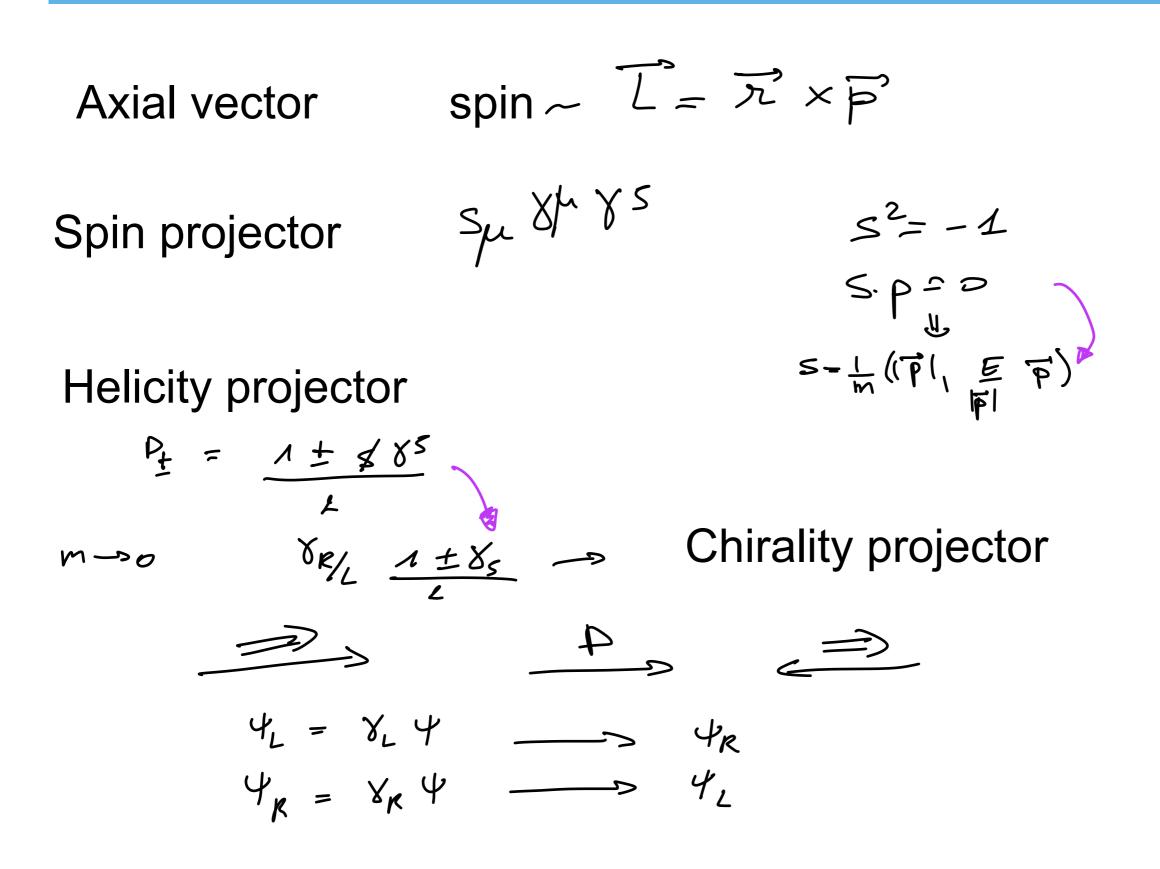


Averaged value over the events

Parity



Parity



Parity

$$JT = \Psi ST \Psi = \Psi ST (S_{L} + S_{R}) \Psi$$

$$= \Psi_{L} ST \Psi_{L} + \Psi_{R} ST \Psi_{R} \xrightarrow{P} J_{L}$$

$$AT = \Psi (T S^{T} Y = F ST (S_{R} - S_{L}) \Psi$$

$$= \Psi_{R} ST \Psi_{R} - \Psi_{L} ST \Psi_{L} \xrightarrow{P} - A_{L}$$

Maximal violating interaction (1958) Feynman Gell-Mann Marshak Sudarshan

Weak interaction with the left only

$$V_{\mu} \xrightarrow{P} M_{\nu} \qquad M_{I} \xrightarrow{P} M_{\nu} \qquad M_{A} \xrightarrow{P} M_{\nu} \qquad Max \text{ if } M_{A} = \pm M_{\nu}$$

$$A_{\mu} \xrightarrow{P} M_{A} \qquad M_{A} \xrightarrow{P} M_{A} \qquad |M_{A}|^{2} \xrightarrow{P} |M_{A}|^{2} \qquad Max \text{ if } M_{A} = \pm M_{\nu}$$

$$|M_{\nu} + M_{A}|^{2} = |M_{\nu}|^{2} + |M_{A}|^{2} + 2Re(M_{\nu}M_{A}^{*})$$

$$\xrightarrow{P} |M_{\nu}|^{2} + |M_{A}|^{2} - 2Re(M_{\nu}M_{A}^{*}) \qquad C. \text{ Degrande}$$

Fermi summary

Le a Ge unt de Ve pl

Requests: pure left massive Vector boson changing particle flavour

All the generations but only the leptons for now

$$E_X := (e_\mu^+ \rightarrow v_e \overline{v_\mu})$$
 in Fermi and SM
at $s = 1, s, so, soo$

Weak group

FERMI = - 2V2 GF(Vn 8^dn) (El V2 Vel) + other

FERMI = - 2V2 GF(Vn 8^dn) (El V2 Vel) + other solution: $Le = \begin{pmatrix} c_L \\ e_L \end{pmatrix}, \quad L_p = \begin{pmatrix} J_p \\ p_1 \end{pmatrix}$ $\begin{aligned} \mathcal{L}_{FERMI} &= -2\Gamma_2 G_F \overline{L}_{\mu} \Gamma^{d} T^{-} \mathcal{L}_{\mu} \overline{L}_{e} \mathcal{X}_{a} T^{\dagger} \mathcal{L}_{e} \\ T = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} T^{\dagger} = (T^{-})^{\dagger} = (T^{-})^{\dagger} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{aligned}$ $J_{L}^{\dagger} = \xi L_{\rho} \delta^{\alpha} T^{-} L_{\rho}$ LERMI = - 2V. GF JL ST

Weak group

In QED

Local gauge symmetry

 $\mathcal{F}_{\mu} \longrightarrow \mathcal{F}_{\mu} = \mathcal{F}_{\mu} - \mathcal{F}_{\mu}$ charge replaced by \mathcal{T}^{\pm}

Y -> e iq U(x) y

Do not commute: non abelian

symmetry group close under commutation $\begin{bmatrix} \tau^{+}, \tau^{-} \end{bmatrix} = -2 \tau^{s} = \begin{pmatrix} -i & \circ \\ \circ & i \end{pmatrix} = -2 \begin{pmatrix} V_{c} & \circ \\ \circ & -V_{c} \end{pmatrix} \begin{bmatrix} U(2) : U = e \\ U = 1 \end{bmatrix}$ $T^{2} = i \begin{pmatrix} T^{+} + T \\ z = V_{c} \begin{pmatrix} \circ & i \\ i & \circ \end{pmatrix} \\ T^{2} = i \begin{pmatrix} T^{+} - T \\ z = V_{c} \begin{pmatrix} \circ & -i \\ i & \circ \end{pmatrix} \end{bmatrix} = i \mathcal{E} \quad \forall k \neq k$ $T^{*} = i \mathcal{E} \quad \forall k \neq k$ C. Degrande

Neutral currents and right leptons

$$L \sim 2_{SU(2)}$$

changed currents and group _____ neutral currents

$$J_{s}^{\alpha} = J_{kc}^{\alpha} = J_{e}^{\alpha} \chi^{\alpha} T^{3} L_{e} = \underbrace{J_{e}^{\alpha} \chi^{\alpha}}_{Not EM} L_{e}^{\alpha} = \underbrace{J_{e}^{\alpha} \chi^{\alpha}}_{Vel} - \underbrace{J_{e}^{\alpha} \chi^{\alpha}}_{Vel} L_{e}^{\alpha} = \underbrace{J_{e}^{\alpha} \chi^{\alpha}}_{Vel} L_{e}^{\alpha}$$

No charged currents with the right fermions

$$V_{R}, l_{R} \sim \Lambda_{SU(2)} \qquad T_{N}(1 \times 1) = 0$$

$$= \delta^{T}$$

$$m F f = m \left(\overline{\xi} f_{R} + \overline{\xi} f_{Z} \right)$$
Not invariant under SU(2)

C. Degrande

۱

Electroweak group

$$\downarrow U(1) \\ \forall \neq FM \longrightarrow \left[q, T^{q} \right]$$

All particles in an SU(2) multiplet have the same charge

 $\Psi \longrightarrow e^{ig_2 \vec{k}(x) \cdot \vec{T} + ig_1 Y \Theta(x)} \Psi$ Dx = 2, - ig War T - ig YBX Br -> Br + 2r O(x) $\frac{B_{\mu\nu}}{W_{\mu}} = \frac{B_{\nu}}{W_{\mu}} + \frac{B_{\nu}}{W_{\mu}} \frac{W_{\mu}}{W_{\mu}} + \frac{B_{\mu\nu}}{W_{\mu}} \frac{W_{\mu}}{W_{\mu}} + \frac{B_{\mu\nu}}{W_$ Invariant Y X Y C. Degrande

Pheno of non abelian gauge theory



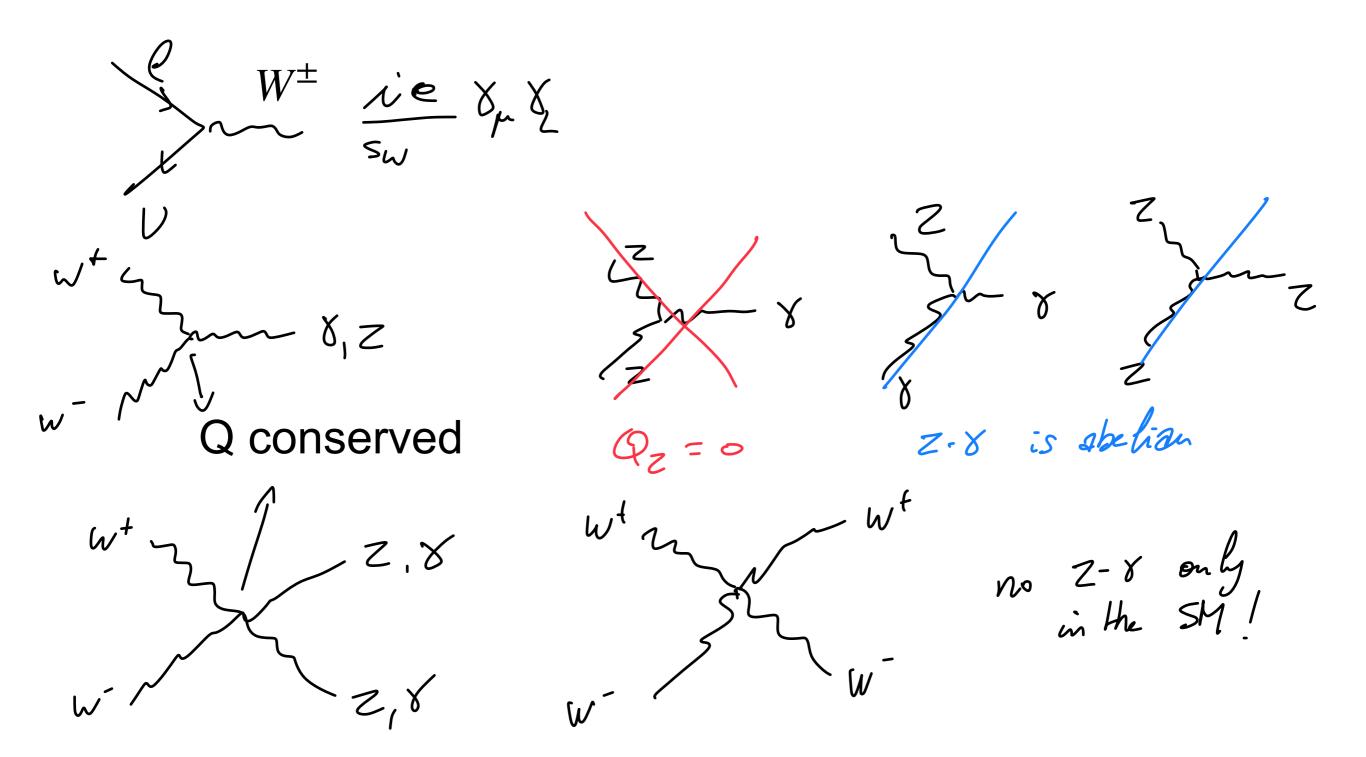
Z-A mixing

L > IXL + VR × VR + G × KR = TJL + UR JVR + le ple -iVZg, IN+T-L -ivz g2 Zyd-++L -ig2 I w3T3L -ig1 I YL&L-ig1 YUR UR BUR -ign Yen TR B GR \mathcal{L}_{NC} $\mathcal{W}^{4} \equiv \frac{W_{1} - iW_{2}}{\sqrt{2}}$ $W = \frac{W_1 + iW_2}{1/2}$ $\begin{pmatrix} W_{3} \\ B \end{pmatrix} = \begin{pmatrix} C_{W} & S_{W} \\ -S_{V} & c_{W} \end{pmatrix} \begin{pmatrix} z \\ A \end{pmatrix} \frac{c_{W}, S_{W}}{s.t.} & \mathcal{P} = 3ie \ \theta_{F} A_{\mu} F \\ \mathcal{N}C = 7ie \ \theta_{F} A_{\mu} F \\ \mathcal{N}C = 7i$ C. Degrande

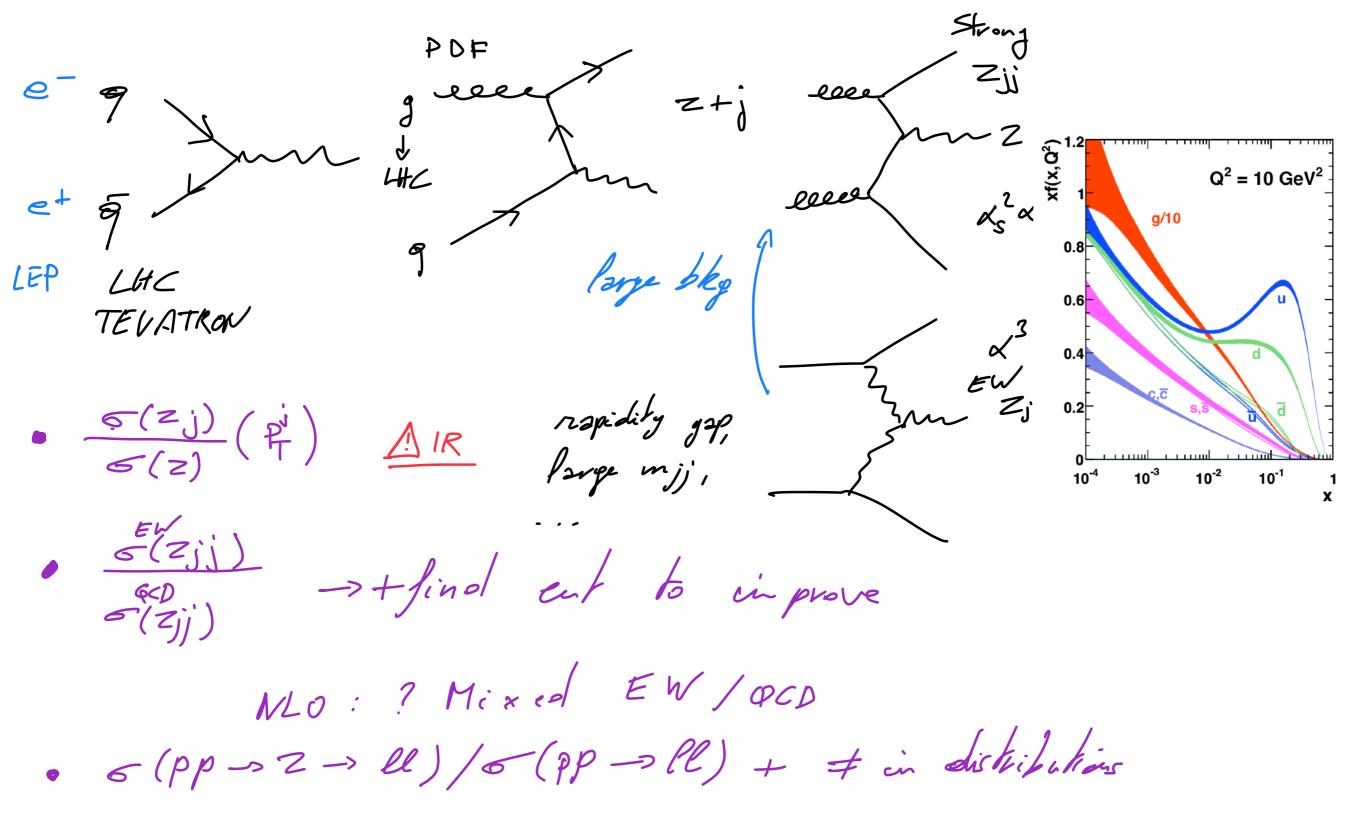
FFV

 $\gamma_{v_{R}} = \circ \longrightarrow$ Not interacting, not in the SM $\gamma_{v_{R}} = -1$ $\mathcal{L}_{NC} = \mathcal{L}_{P_{F}} \left\{ -i e \varphi_{F} A_{\mu} \overline{F} \times F - i e Z_{\mu} (T^{3} - s_{\omega}^{2} \varphi) \right\}$ $F = v_{R} \left\{ k_{\mu} \right\}_{F} \left\{ -i e \varphi_{F} A_{\mu} \overline{F} \times F - i e Z_{\mu} (T^{3} - s_{\omega}^{2} \varphi) \right\}$ $Z \xrightarrow{ie} (T^{3} - s_{\omega}^{2} \varphi)$ $Z = \frac{ie}{(-1/2 - s_{\omega}^{2})} t \delta_{1} + (-s_{\omega}^{2}) t \delta_{k}$ ww mz<u>ic</u> ½8/1×2 no X_R! Sww

More electroweak interactions



Z production



WW scattering

Gauge invariance implies massless boson

 $P_{L}^{\dagger} = (\mathcal{E}, \circ, \mathcal{P}, \mathcal{P}) \quad \mathcal{E}_{\pm} = \underbrace{(\mathcal{P}, 1, \pm i, \circ)}_{\mathbb{V}^{2}}$ $\mathcal{E}_{L} = \underbrace{+}{\mathbb{W}} (\mathcal{P}, \mathcal{P}, \mathcal{P}, \mathcal{E})$ Iongitudinal, only if massive WLWL -> WLWL otherwise transverse only 3 pt only $|M_{1} + M_{2}|^{2} \propto \frac{(s^{2} + y + s + t^{2})}{m_{y}^{2}}$ $\implies = \sum \sigma n \sigma \qquad (\sigma n \frac{|M|^{2}}{s})$ 3 pt and 4 pt $|M_1 + M_2 + M_3| \propto \frac{(-s-t)}{m^2}$ GN LONG

Electroweak symmetry breaking

The U(1) case

Ap -> Ap + Op X(X) Dr -> gr -ie Ar $\phi \rightarrow e^{ie \kappa(x)} \phi$

complex field or not charged

$$\mathcal{L} = -\frac{1}{4} \quad F_{\mu\nu} + \frac{1}{2} \quad \phi^{\dagger} \quad \phi^{\dagger} \quad \phi^{\dagger} - \frac{1}{4} \quad \psi^{\dagger} \phi^{\dagger} - \frac{1}{4} \quad \phi^{\dagger} \phi^{\dagger}$$

$$V(\phi) = \mu^{2} \phi t \phi + \lambda (\phi^{T} \phi)^{2} \qquad \lambda > 0$$

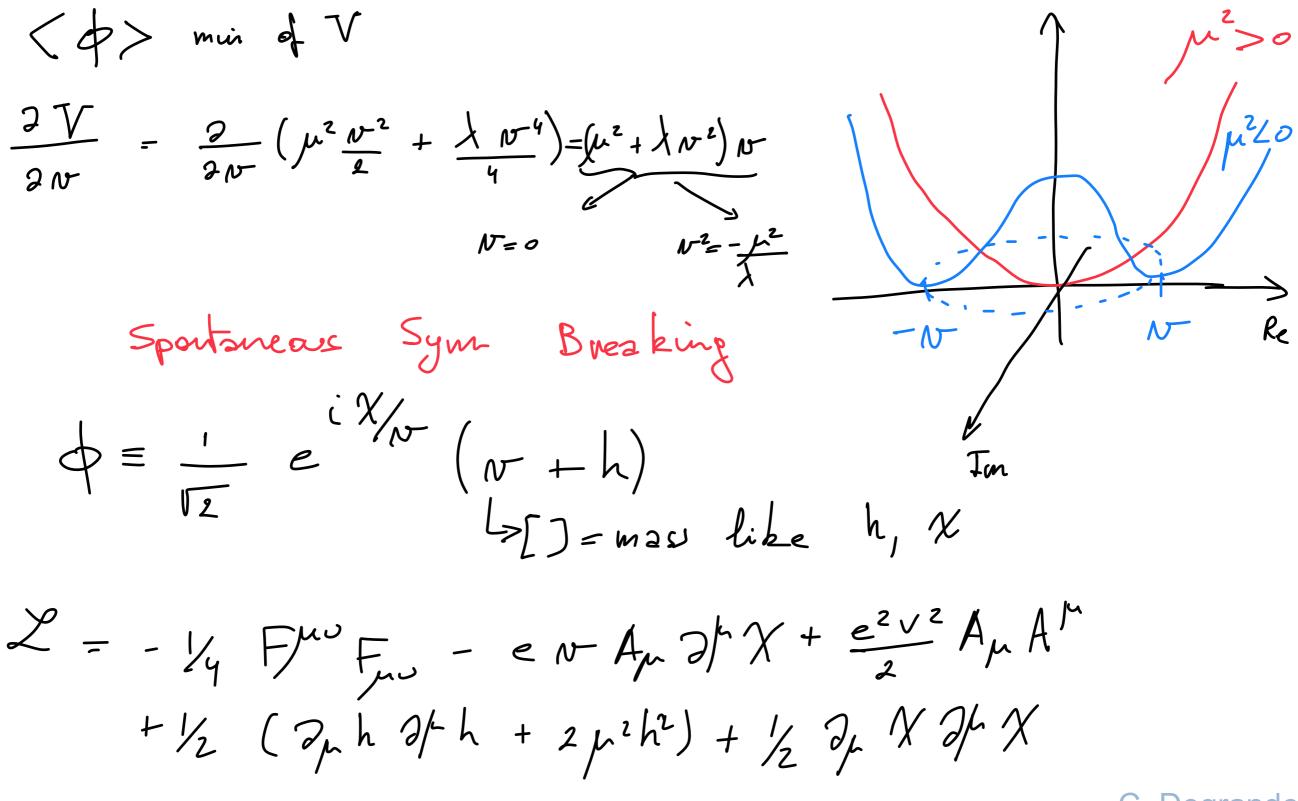
$$\mu^{2} > o \qquad \longrightarrow \qquad \langle \phi \rangle = o$$

$$\mu^{2} < o \qquad \longrightarrow \qquad \langle \phi \rangle = \left[\frac{-\mu^{2}}{2\lambda} \right] \equiv \frac{\sqrt{2}}{2} chose \qquad \text{usl by}$$

$$\mu^{2} < o \qquad \longrightarrow \qquad \langle \phi \rangle = \left[\frac{-\mu^{2}}{2\lambda} \right] \equiv \frac{\sqrt{2}}{2} chose \qquad \text{usl by}$$

$$C. \text{ Degrande}$$

Minimum of the potential



Massive gauge boson

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}F_{\mu\nu} - e^{\mu\nu}A_{\mu}\partial^{\mu}X + \frac{e^{2}\nu^{2}}{2}A_{\mu}A^{\mu}$$
$$+\frac{1}{2} (\partial_{\mu}h\partial^{\mu}h + 2\mu^{2}h^{2}) + \frac{1}{2}\partial_{\mu}X\partial^{\mu}X$$

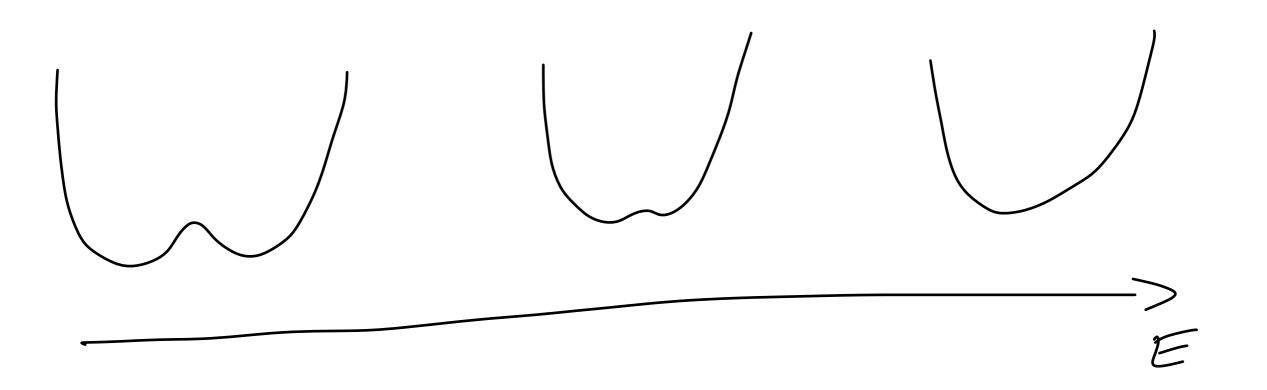
- 1 gauge boson of mass
- 1 real scalar field h of mass² = $-\frac{2}{\mu^2} > 0$

1 massless scalar field γ mixed with A

> Unphysical: removed by gauge transformation Only derivative interactions: Goldstone boson(massless) transforms linearly with the gauge $\chi \longrightarrow \chi_+ \varkappa_e N$

Massive vector = 3 d.o.f.=1 scalar + 1 massless vector

At high energy



symmetry is restored

Electroweak symmetry breaking

$$SU(2)_{L} \times U(4)_{Y} \rightarrow U(4)_{EH}$$
Broken $\implies \phi \sim (2), 3, 4, \dots, d SU(2)_{L} \text{ wf } 1$

$$G = T^{3} + Y \implies 1 \text{ neutral component a break EM}$$

$$Y = \pm 1/2$$

$$\varphi = \begin{pmatrix} \phi^{+} \\ h + is + h^{-} \end{pmatrix} \implies \langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \circ \\ h^{-} \end{pmatrix}$$
chosen by gauge

Same potential

$$V(\phi) = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 \qquad \sigma^2 = \mu^2$$

Vector bosons masses

Vector bosons masses

$$M_{2}^{2} = \frac{1}{4} \left(\frac{q^{2}}{g_{1}} + \frac{q^{2}}{g_{2}} \right) v^{2} = \left(\frac{ev}{2swew} \right)^{2}$$

$$p = \frac{m\omega}{m_2^2 - \omega} = 1 \quad \text{in the ST}$$

$$i\int_{\infty}^{\infty} \frac{1}{2} - \frac{2}{\sqrt{2}} \int_{\infty}^{\infty} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \int_{\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{\infty$$

Protected by custodial symmetry, only broken by gauge and Yukawa interactions

Fermi

m,

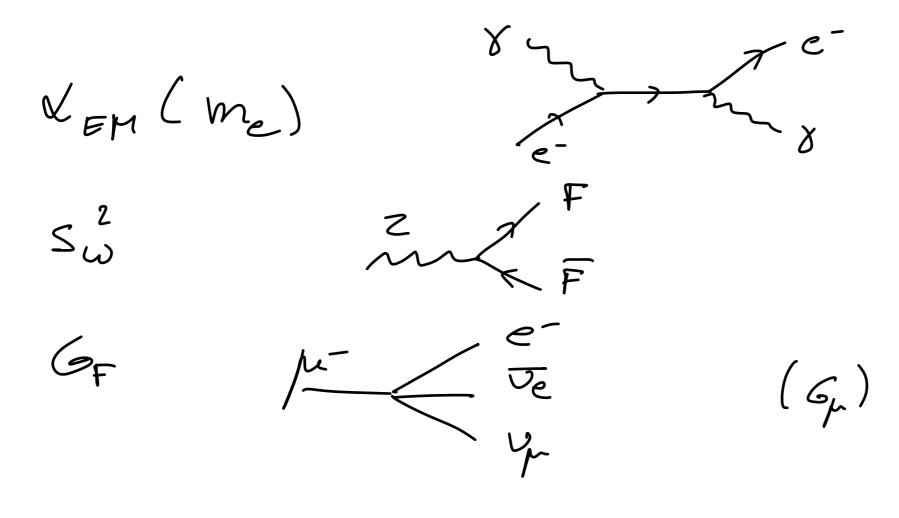
$$\frac{1}{\sqrt{2}} \ll \frac{1}{\sqrt{2}} \Longrightarrow G_F = \frac{1}{\sqrt{2}\sqrt{2}}$$

$$N \stackrel{a}{=} 246 \text{ GeV}$$

$$S_{\omega}^{2} \stackrel{a}{=} 0.23$$

$$X_{\text{EM}}(m_{e}) \stackrel{a}{=} \frac{1}{137}$$

Masses predictions



Very soft Compton scattering

 $m_{\omega} \stackrel{\sim}{=} 80 \text{ GeV}$

M_Z № 91 GeV

More about EWSB

3 Goldstone bosons

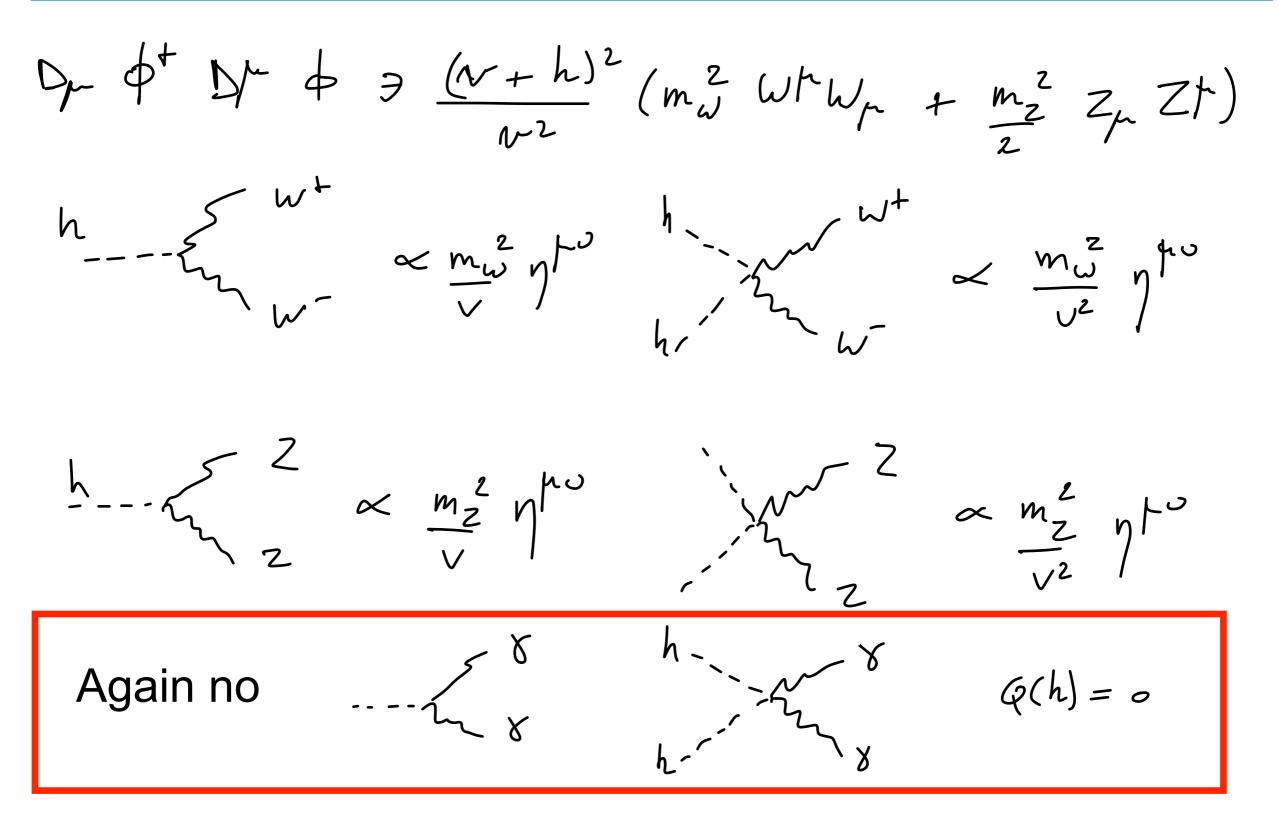
3 broken generators $SU(2)_{L} \approx U(1)_{Y} \rightarrow U(1)_{eff}$ $3 + 1 \rightarrow 1$

3 massive gauge vector bosons eat 3 d.o.f.

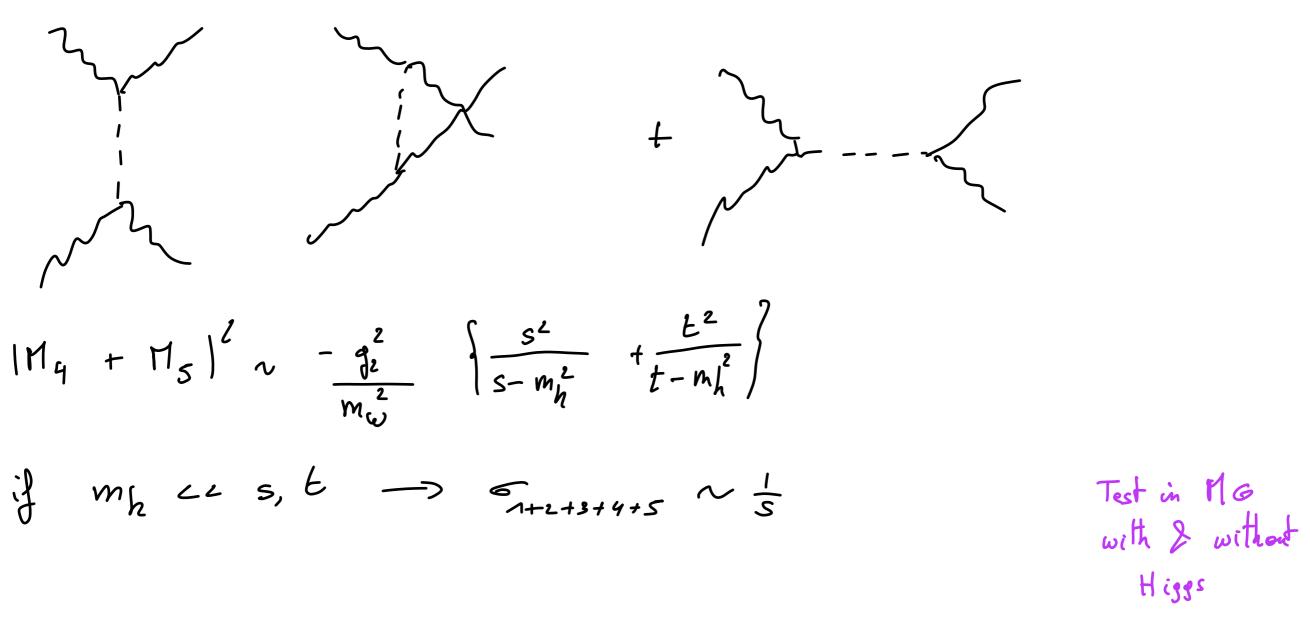
Unitary gauge: $\Box = \Box = \phi^{\pm}$

At high energy: $V_L \sim G$. B.

Higgs gauge interactions

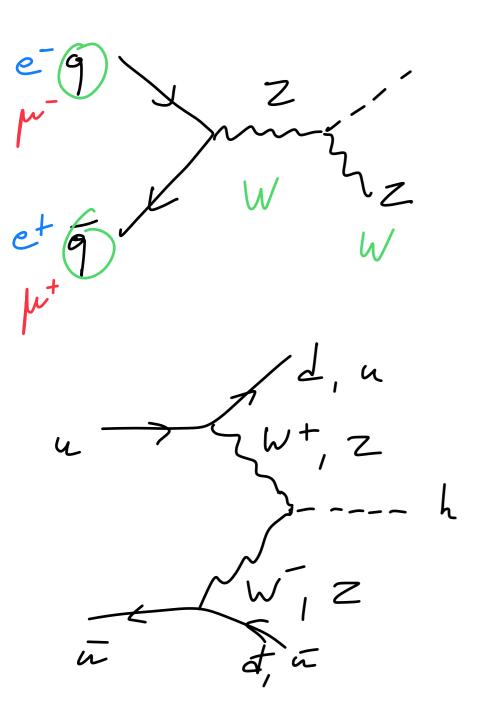


WW scattering



No unitarity violation at high energy

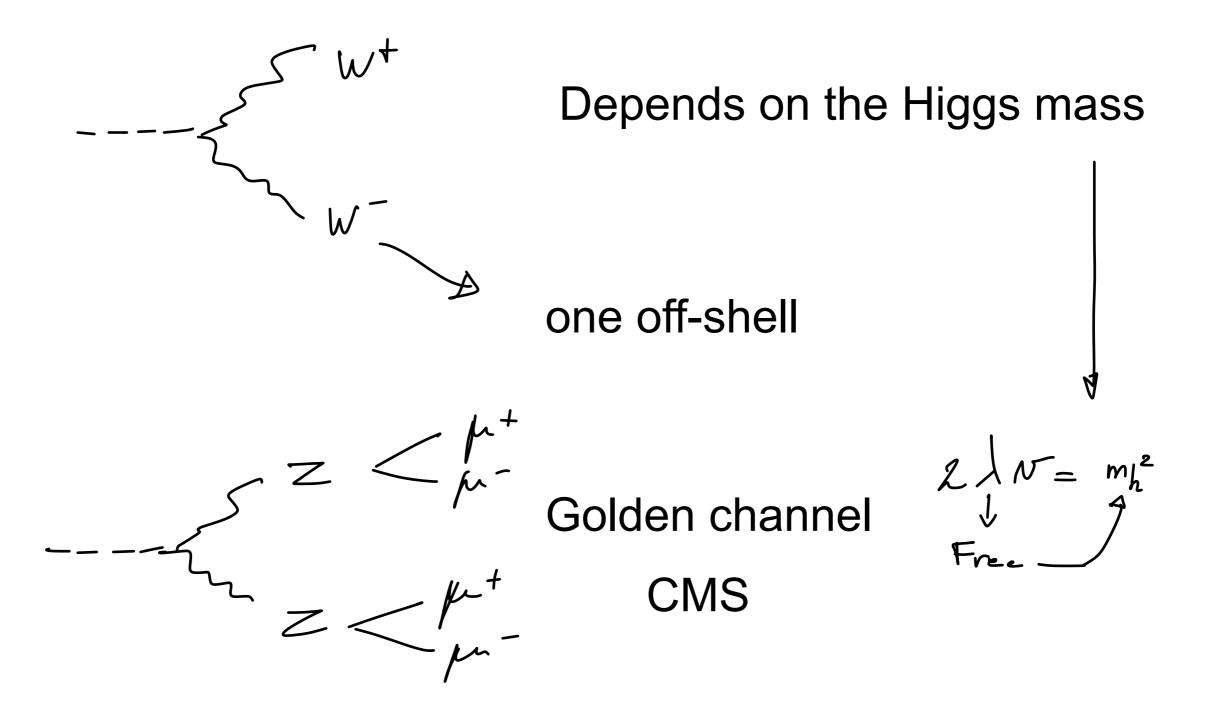
Some H production



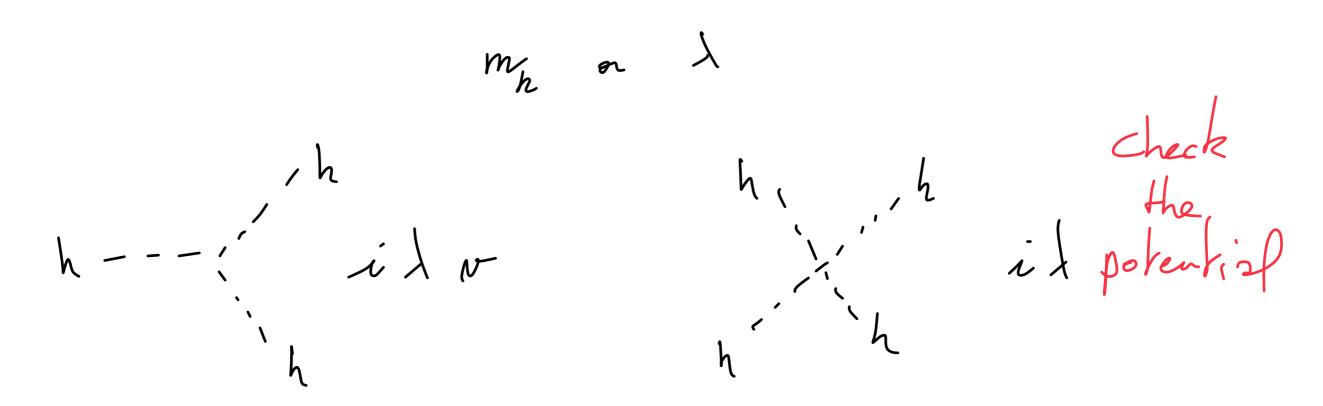
Associated production

Vector boson fusion

Some H decay

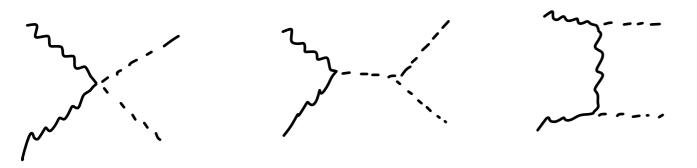


Last free parameter



consistency check

Double or more Higgs production but other diagrams



Fermion masses

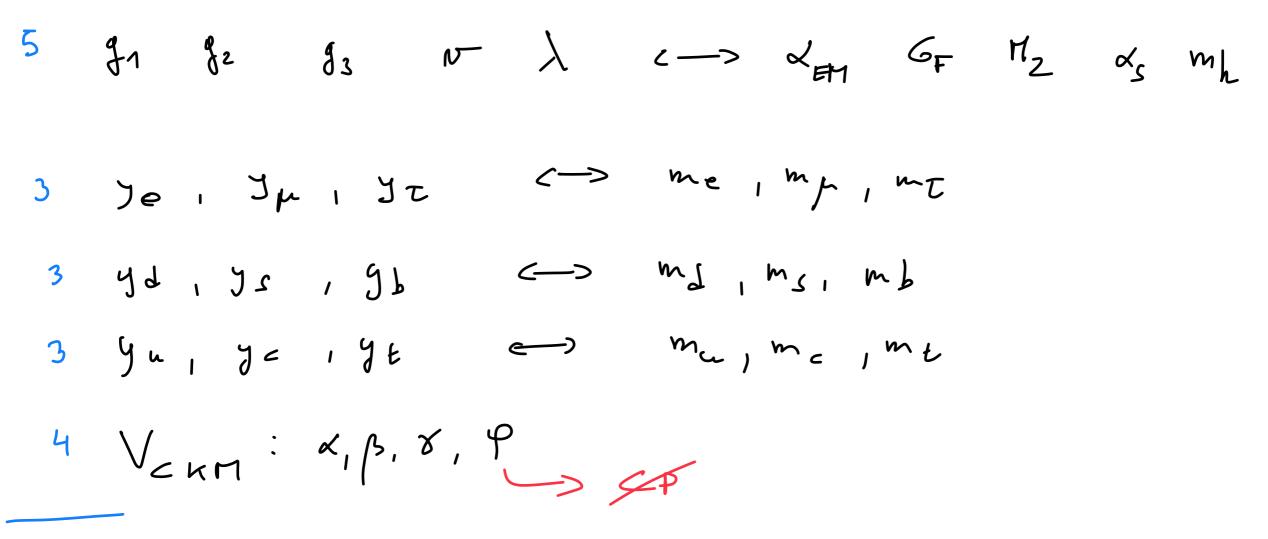
 $m \overline{\Psi} \Psi = m(\overline{\Psi}_{R} + \overline{\Psi}_{R} \Psi)$ $\frac{\sum l_{e}}{\sum 2} \frac{2}{\operatorname{SU}(2)} \frac{1}{2} \frac{1}{\operatorname{SU}(2)} \frac{1}{2} \frac{1}{\operatorname{SU}(2)} \frac{1}{2} \frac{1}{\operatorname{SU}(2)}$ Same as φ not mass eigenstate One field solve 2 problems! Lepton = - ye L' & l' + h.c. + i L' & L' + i & Dk' $U_{\mathbf{R}} \boldsymbol{\ell}_{\mathbf{R}} = \boldsymbol{\ell}_{\mathbf{R}}^{\prime} \qquad \qquad U_{\boldsymbol{L}} \boldsymbol{L} = \boldsymbol{L}^{\prime} \qquad U_{\boldsymbol{L}}^{\dagger} y_{l} U_{\boldsymbol{R}} = diag(y_{e}, y_{\mu}, y_{\tau})$ Leptons = i INL+: TRNR - I (Gr gr ge) øle + h.c. U_{L}, U_{R} disappear $\overline{\ell}_{L}^{i}(\underline{v+h})$ gi \underline{k}^{i} $U_L U_I^{\dagger} = U_I^{\dagger} U_L = U_R U_R^{\dagger} = U_R^{\dagger} U_R = 1$ C. Degrande

More about lepton masses

y = 3 \Rightarrow 18 parameters but only 3 are physical

Quark masses

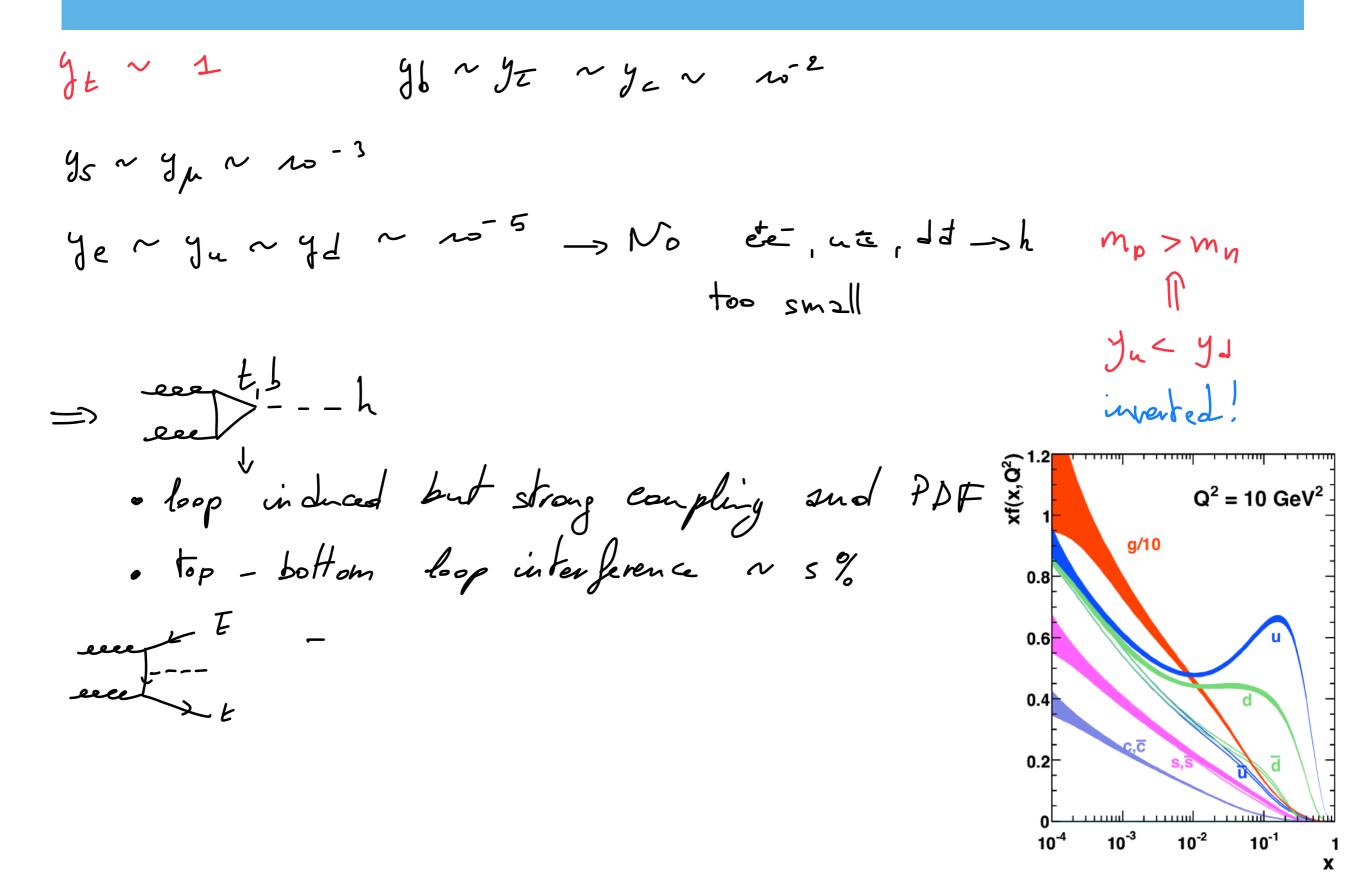
Parameter counting



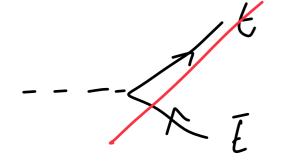
Mostly from the Yukawa matrices!

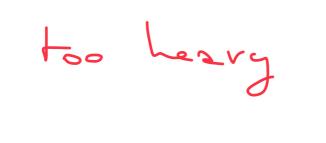
3 generations

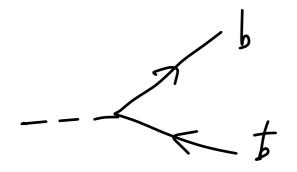
Higgs production through top



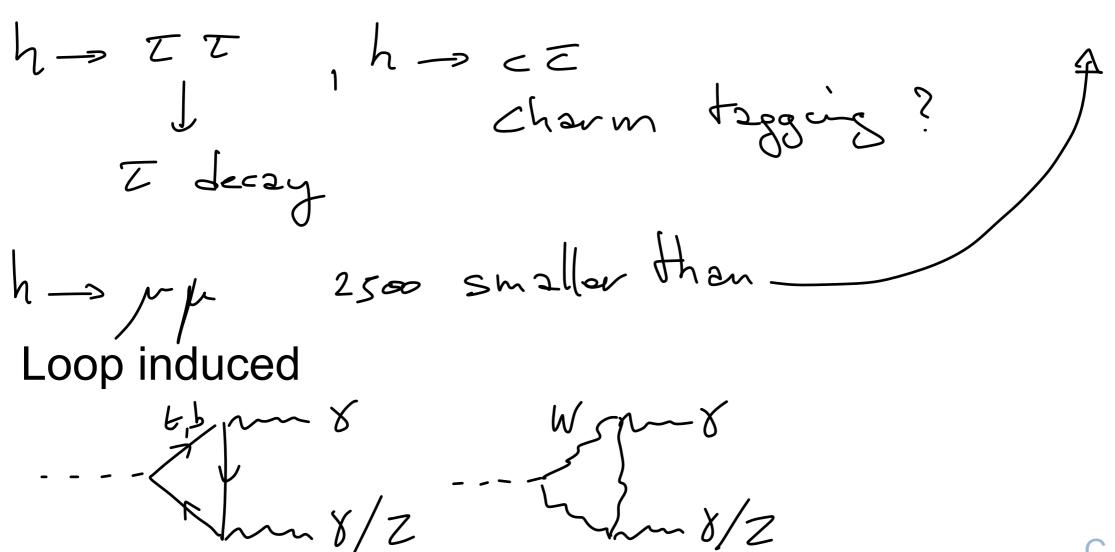
Higgs with fermions





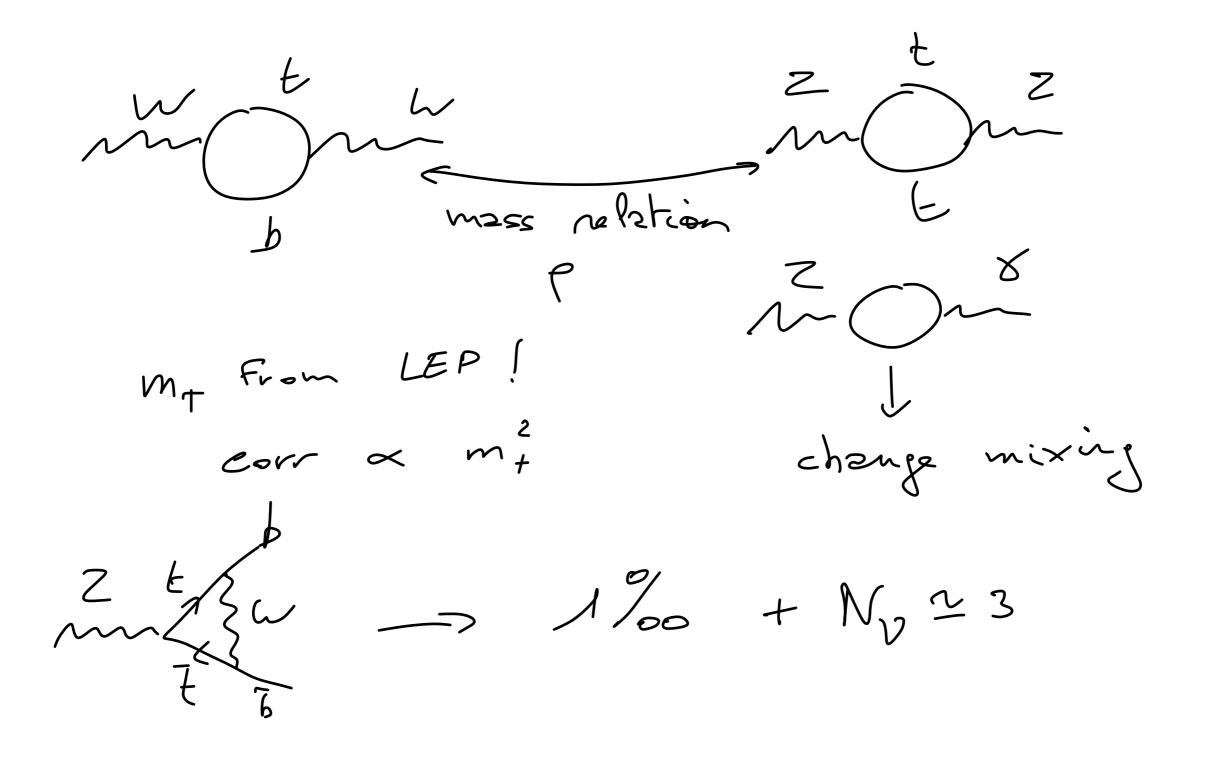


Largest but QCD background



Higgs exercises

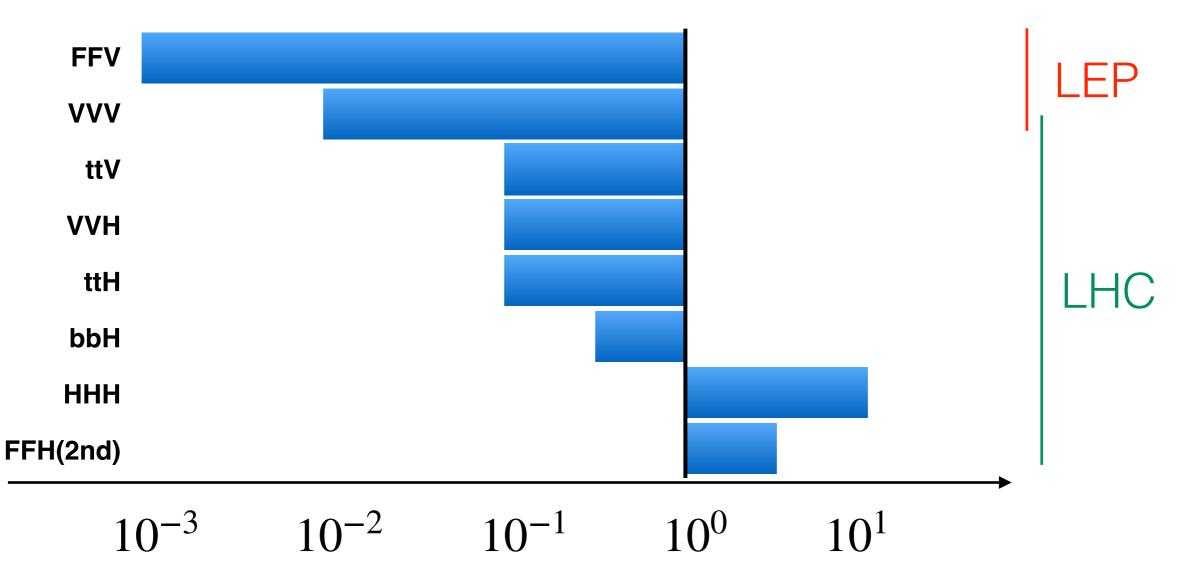
Electroweak precision tests



Effective field theory

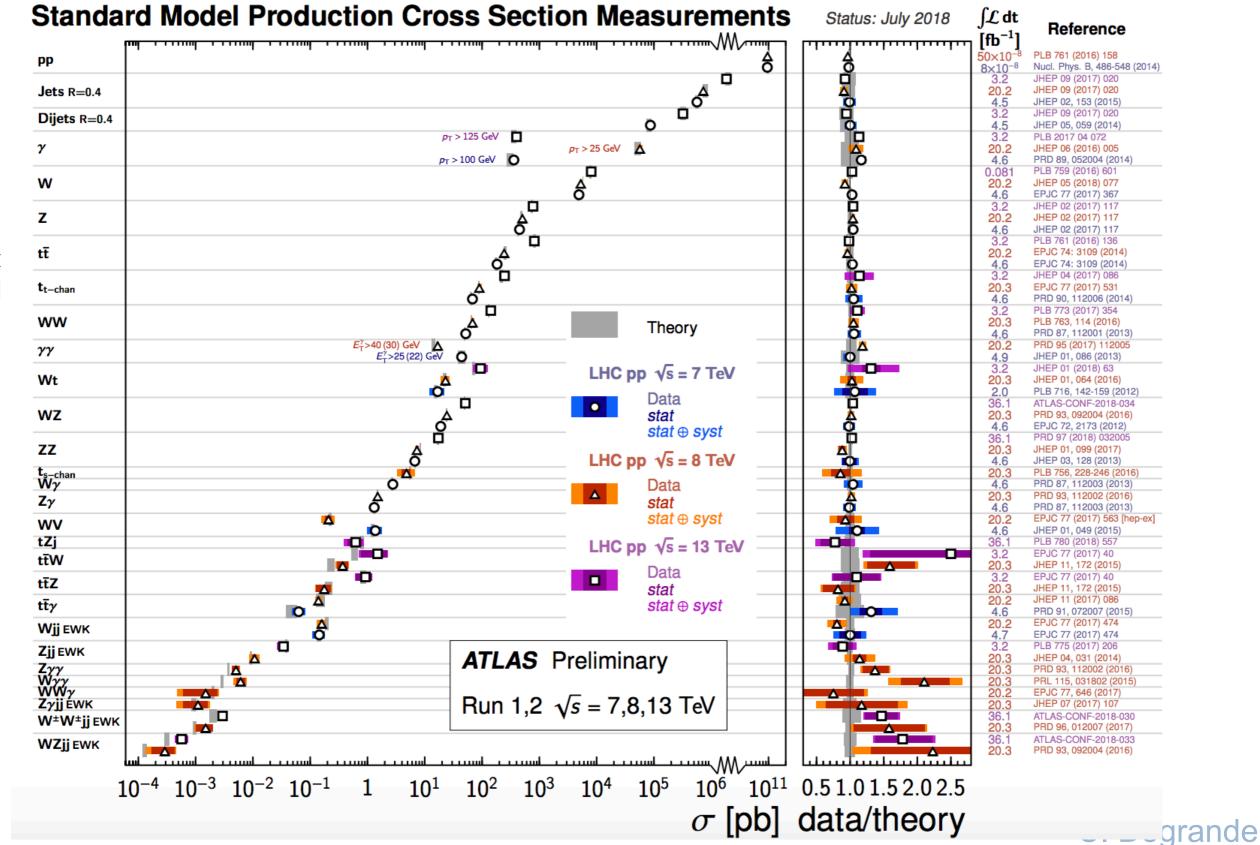
Precision: LEP vs LHC

How well do we know the SM?



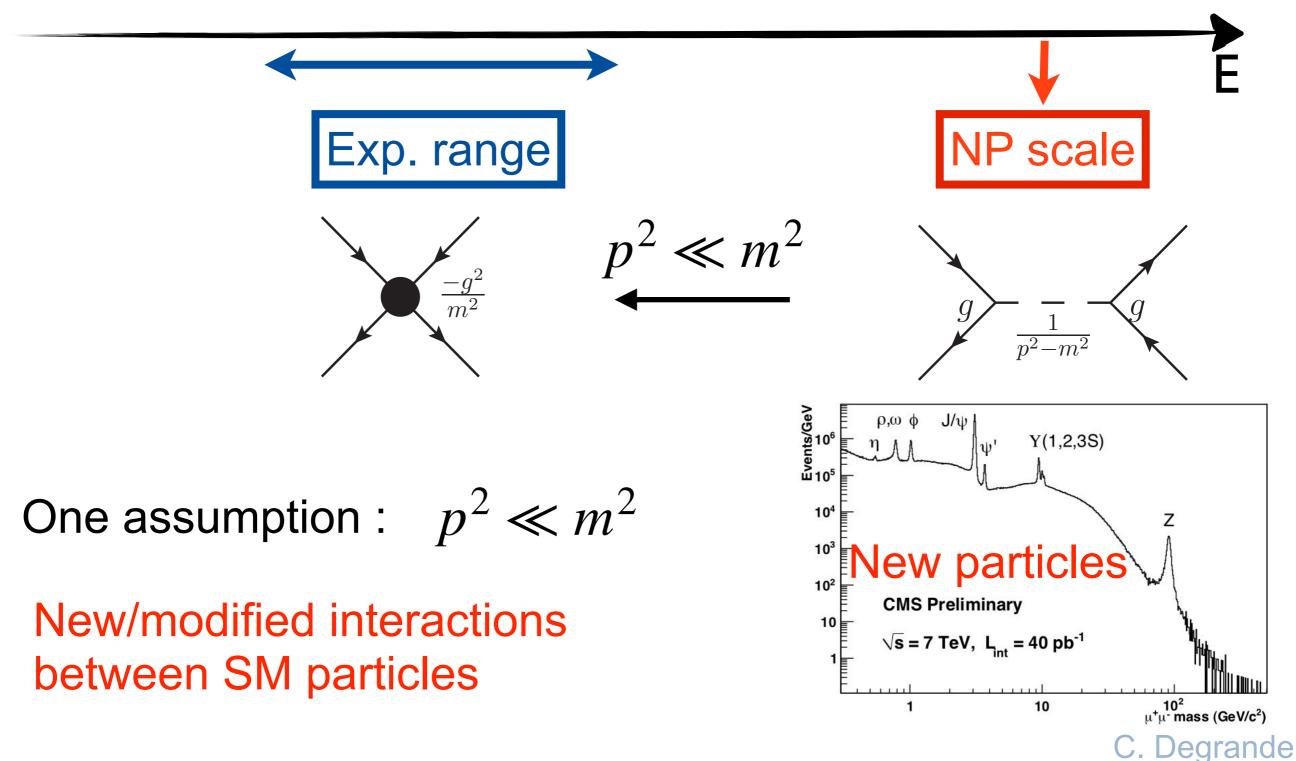
LHC<LEP: QCD perturbative (α_S) and non-pert. (PDF,hadronisation), backgrounds, ...

Precision era at the LHC



Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments



$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d - SM \text{ fields \& sym.}$

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$

• Assumption : $\mathbf{E}_{exp} \ll \Lambda$
 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$
a finite number of coefficients
=>Predictive!

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$
• Assumption : $\mathbf{E}_{exp} << \Lambda$

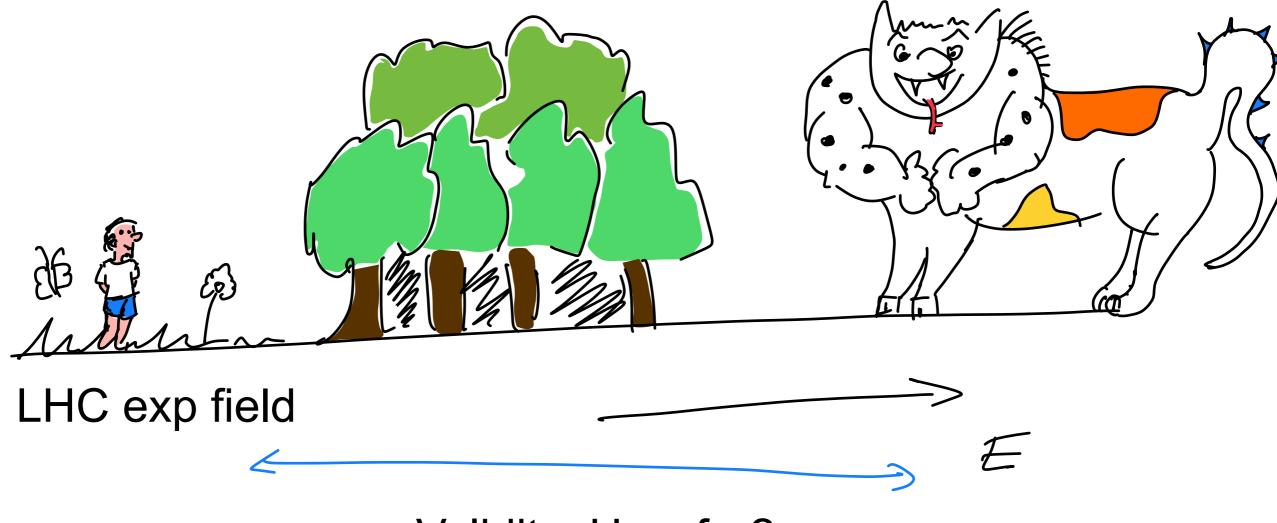
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$$
a finite number of coefficients =>Predictive!

C. Degrande

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

m

One hypothesis



Validity: How far?

0/2F operators

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

New interactions + param/field redefinitions

4F operators

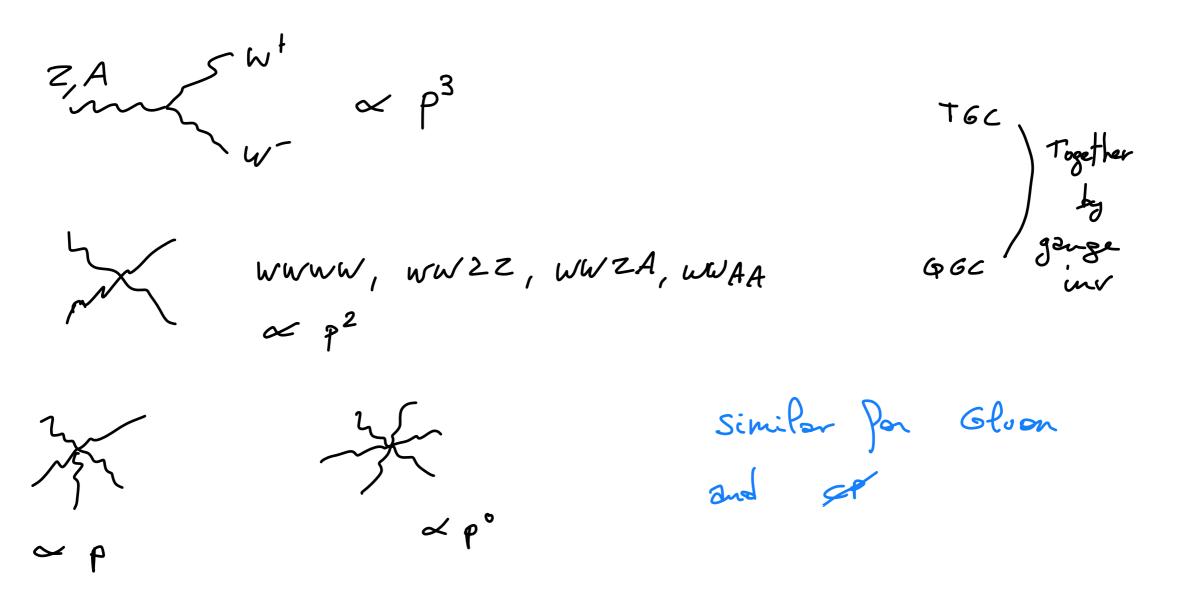
$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left(\bar{q}_p\gamma_{\mu}T^A q_r)(\bar{u}_s\gamma^{\mu}T^A u_t)\right)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
Q_{ledq}	$Q_{ledq} \qquad (\bar{l}_p^j e_r)(\bar{d}_s q_t^j) \qquad Q_{duq}$		$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$						

4F

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
	FERMI	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
	$\sim \sim \sim$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	${}^{T}Cu_{r}^{\beta}\right]\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

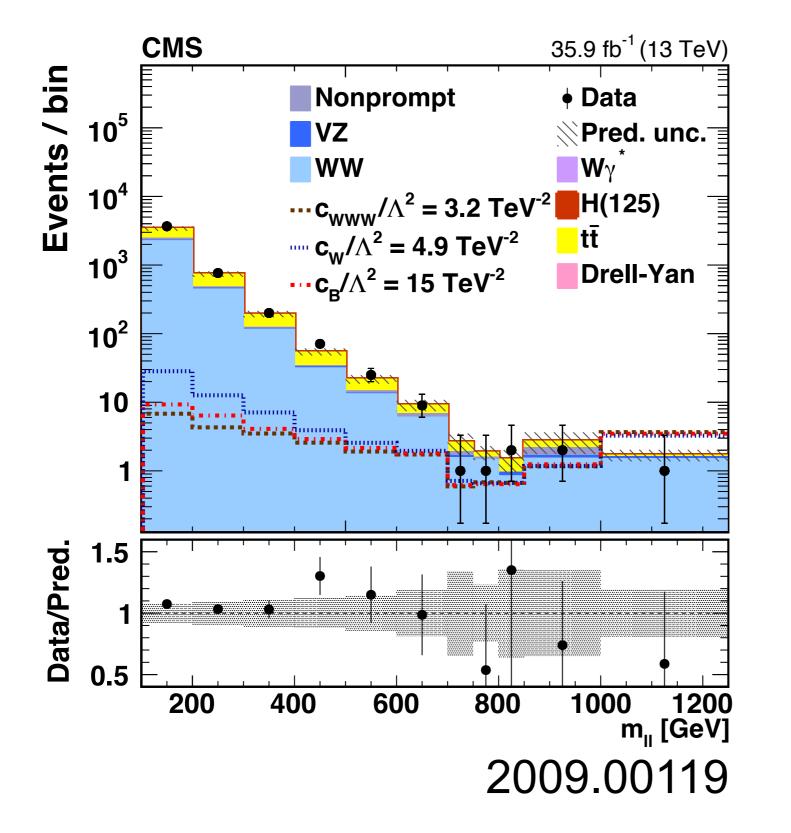
Pure gauge

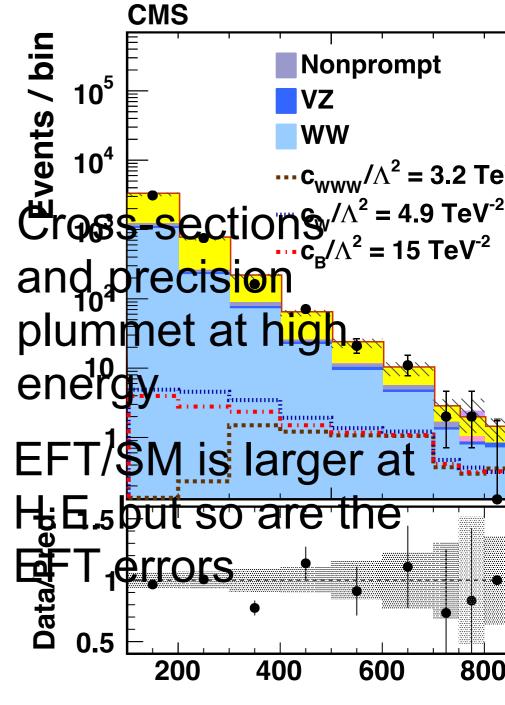
 $Q_W \quad \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$



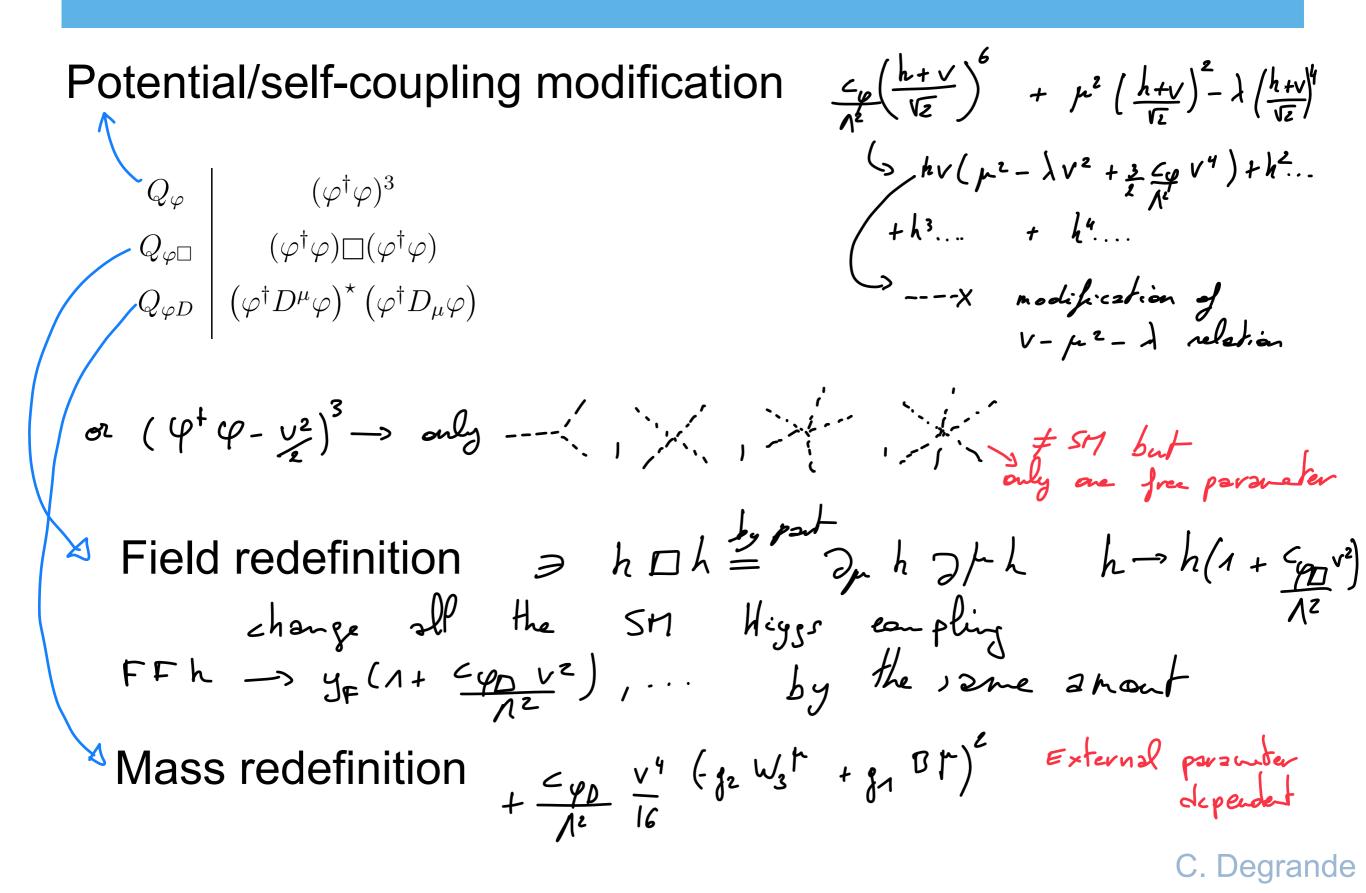
No neutral TGC (ZZA, ZAA)

High energy tails

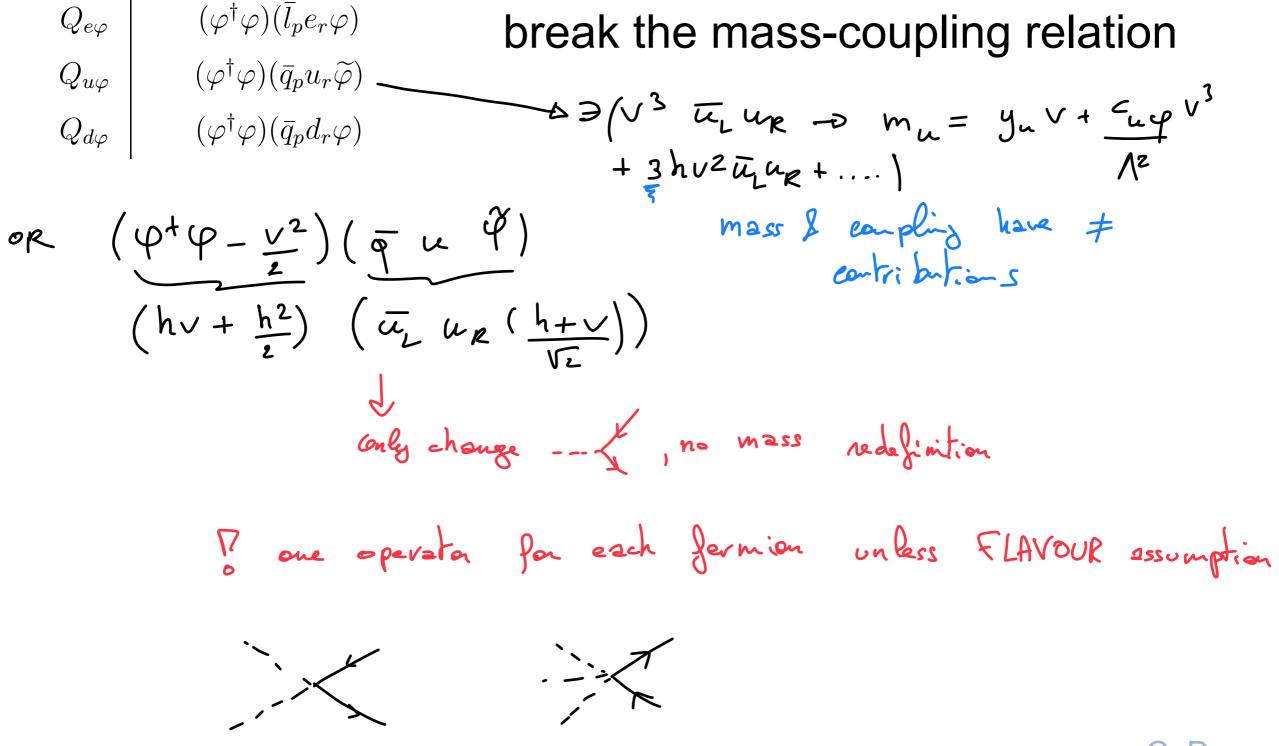




Higgs operators



Higgs-Fermion



More Higgs and gauge

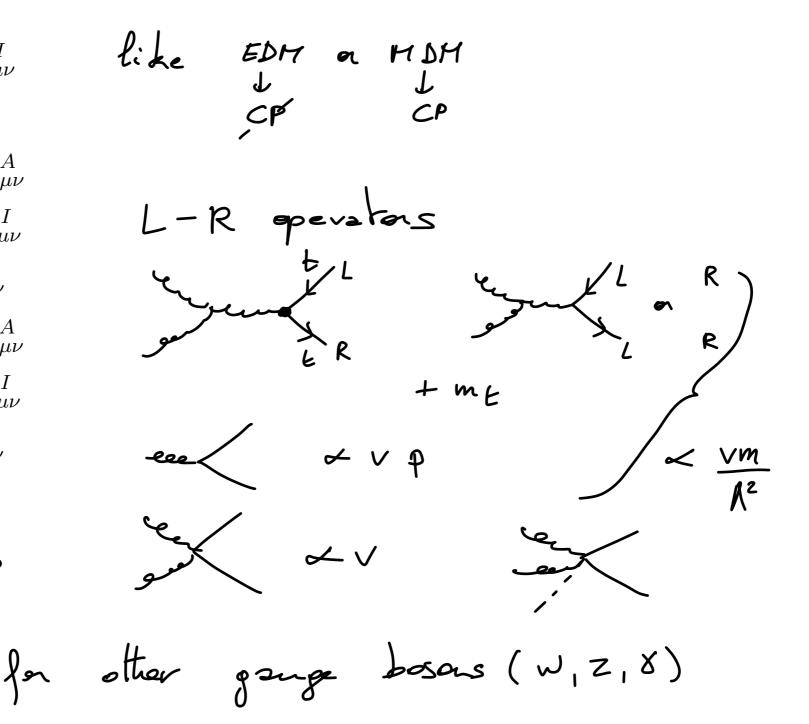
 $egin{aligned} Q_{arphi G} \ Q_{arphi \widetilde{G}} \ Q_{arphi W} \ Q_{arphi \widetilde{W}} \ Q_{arphi \widetilde{B}} \ Q_{arphi \widetilde{W}} \ Q_{arphi \widetilde{B}} \ Q_{arphi \widetilde{W}} \end{aligned}$

Dipoles

 $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$ Q_{eW} $(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$ Q_{eB} $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$ Q_{uG} Q_{uW} $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$ Q_{uB} $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$ Q_{dG} $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$ Q_{dW} $(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$ Q_{dB}

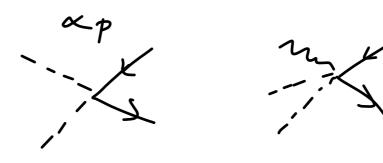
Кp

Same



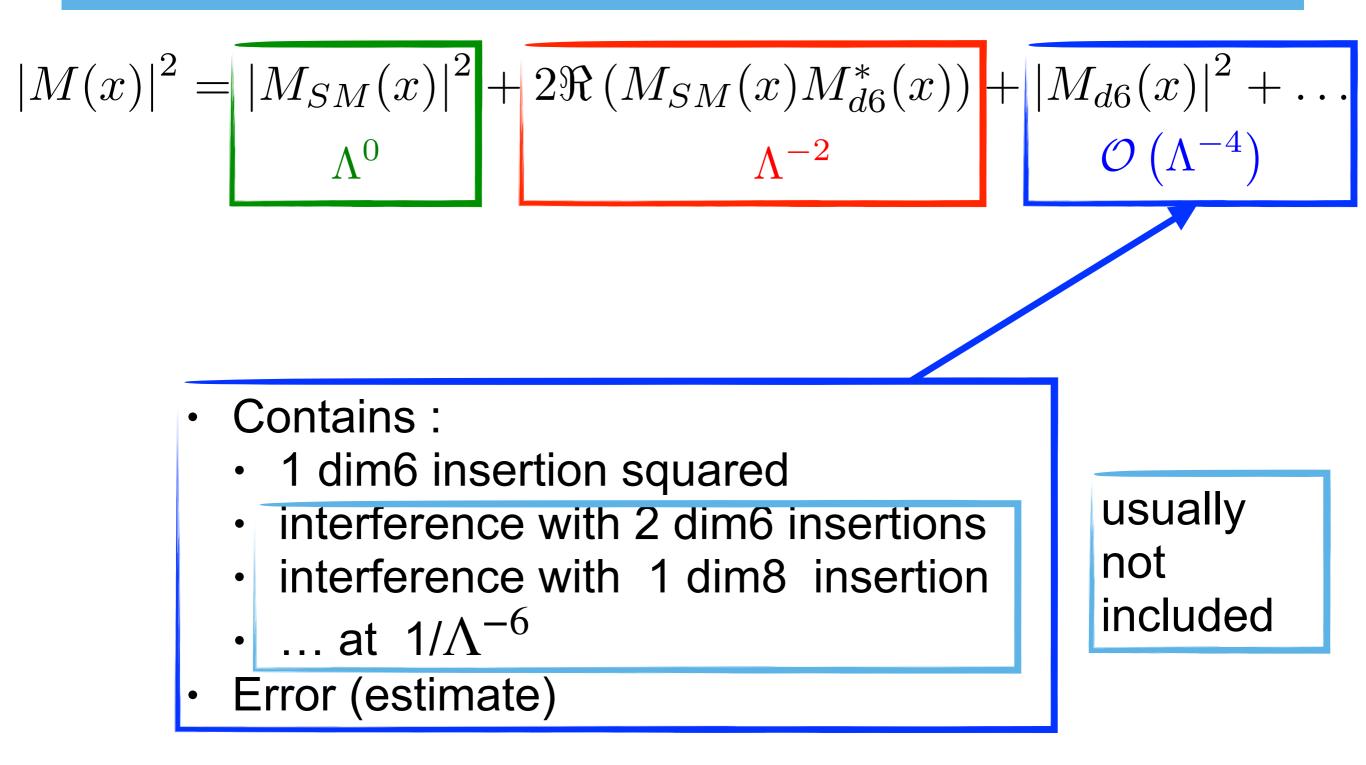
Higgs, gauge and fermion

 \prec \checkmark 4 » ∝ m_F



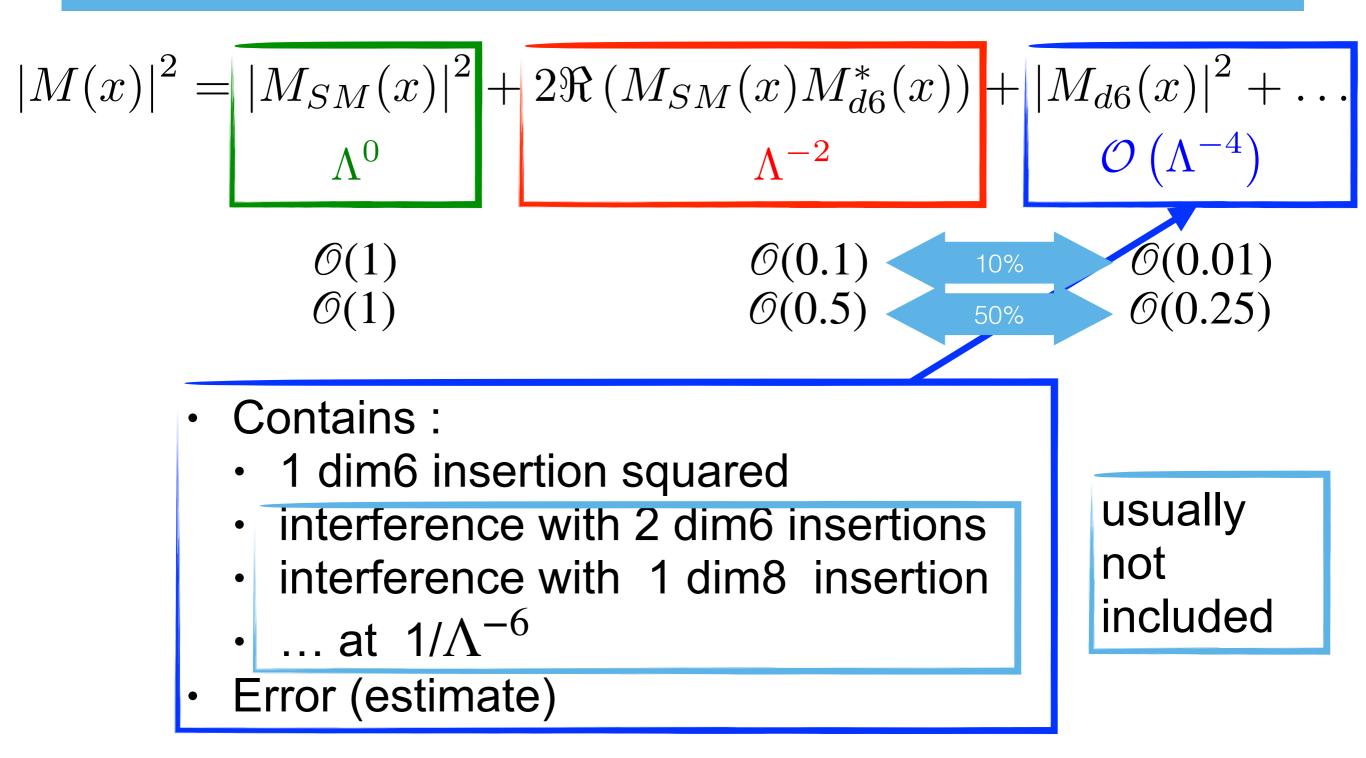
SMEFT and interference

\mbox{Errors} : higher power of $1/\Lambda$



Dimension 8 basis: Li et al., 2005.00008

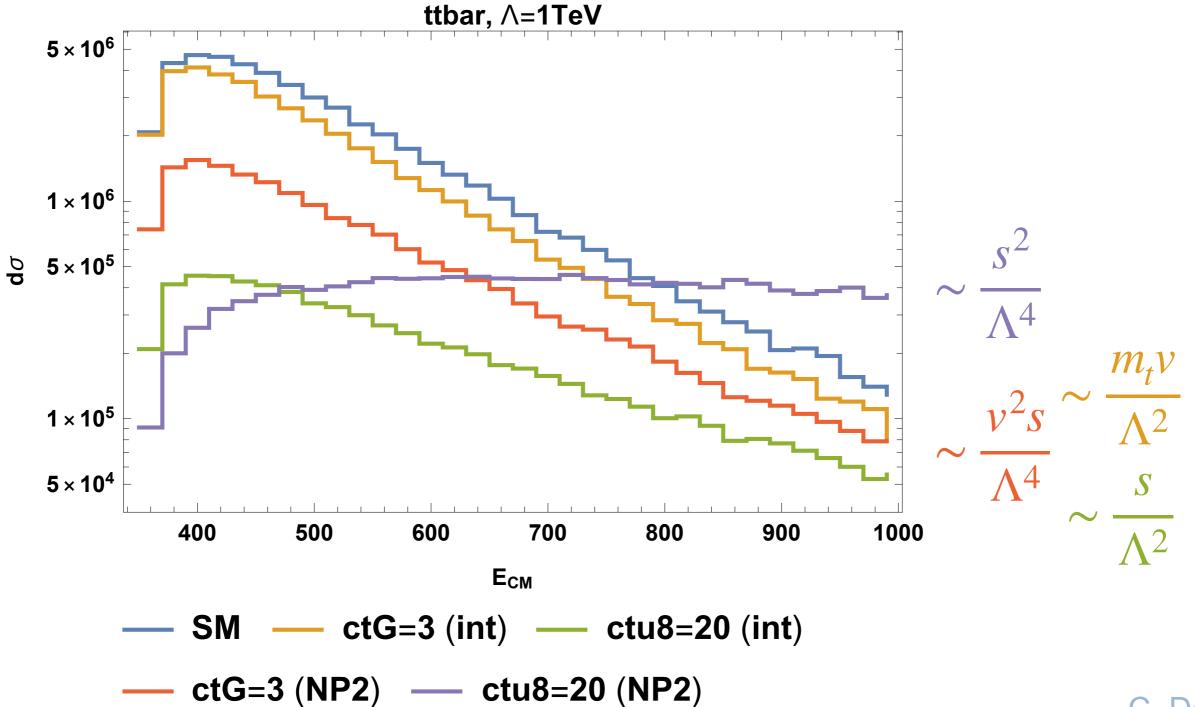
Errors : higher power of $1/\Lambda$

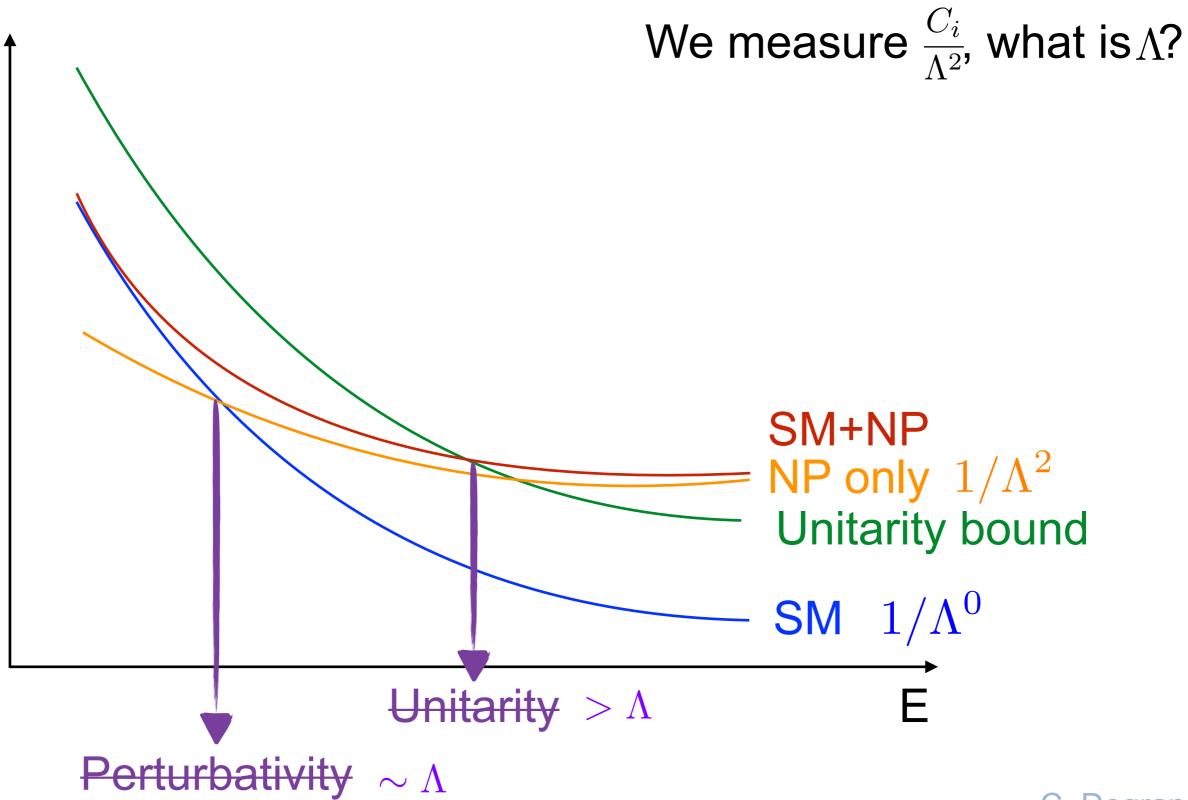


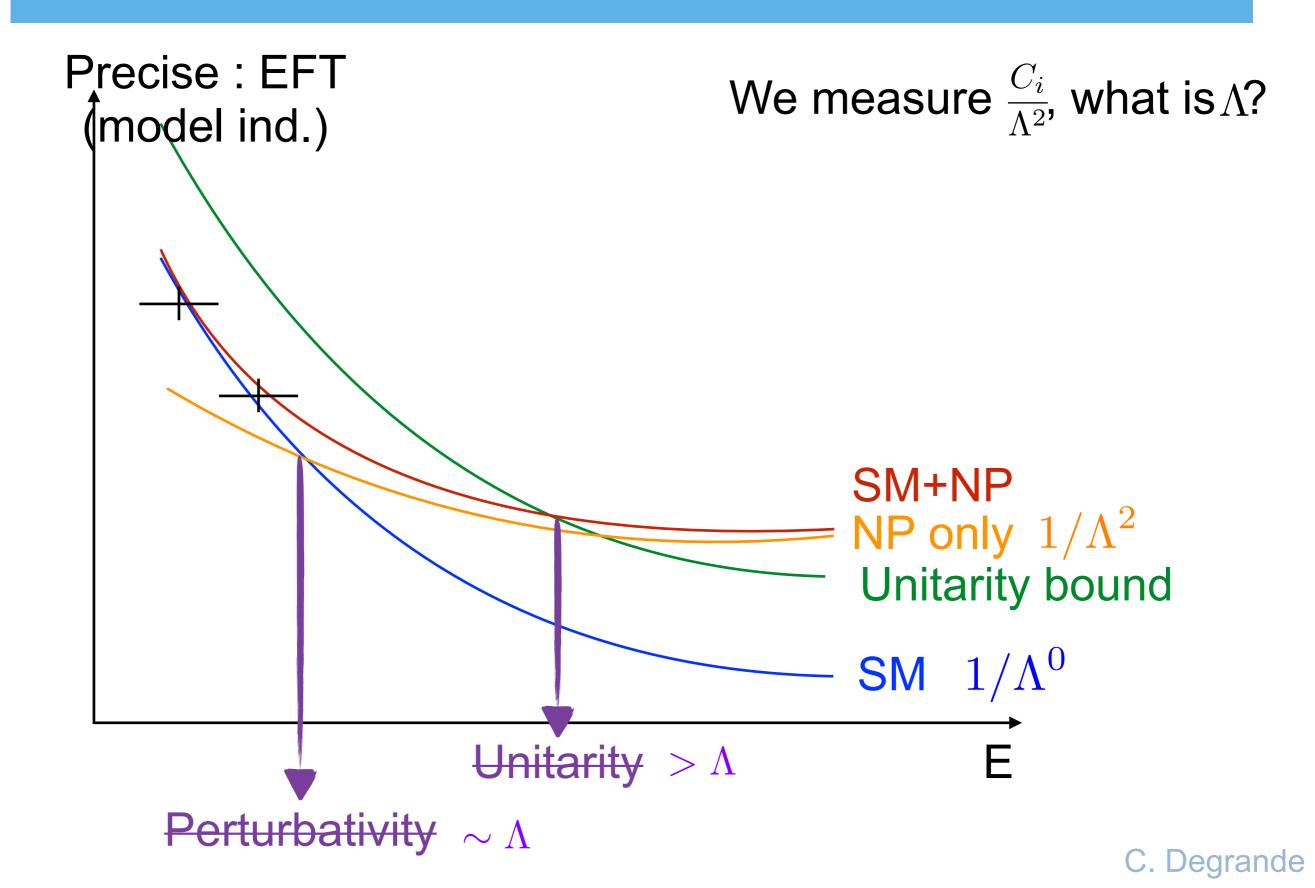
Dimension 8 basis: Li et al., 2005.00008

top pair production

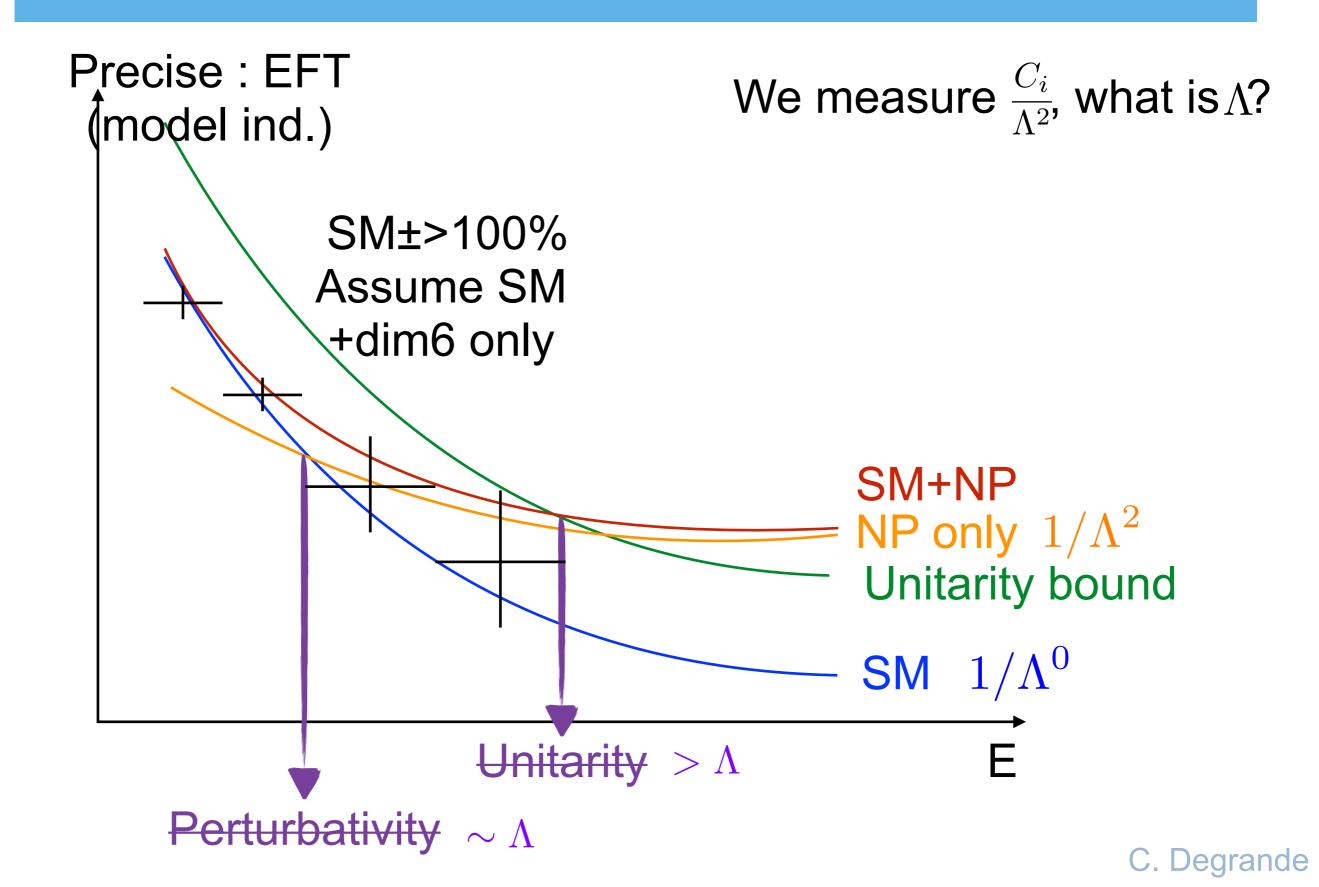
4F interfere only with qq



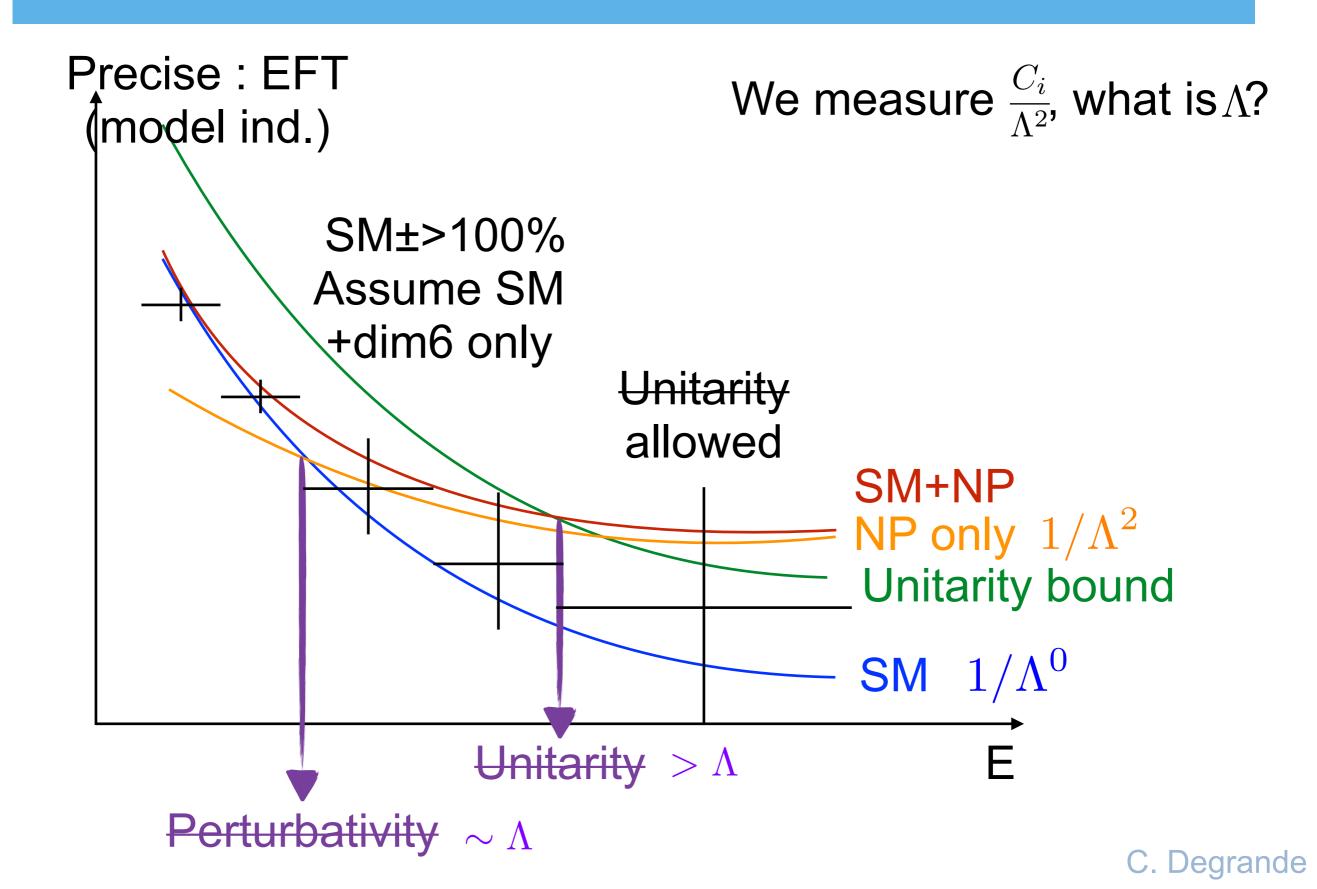




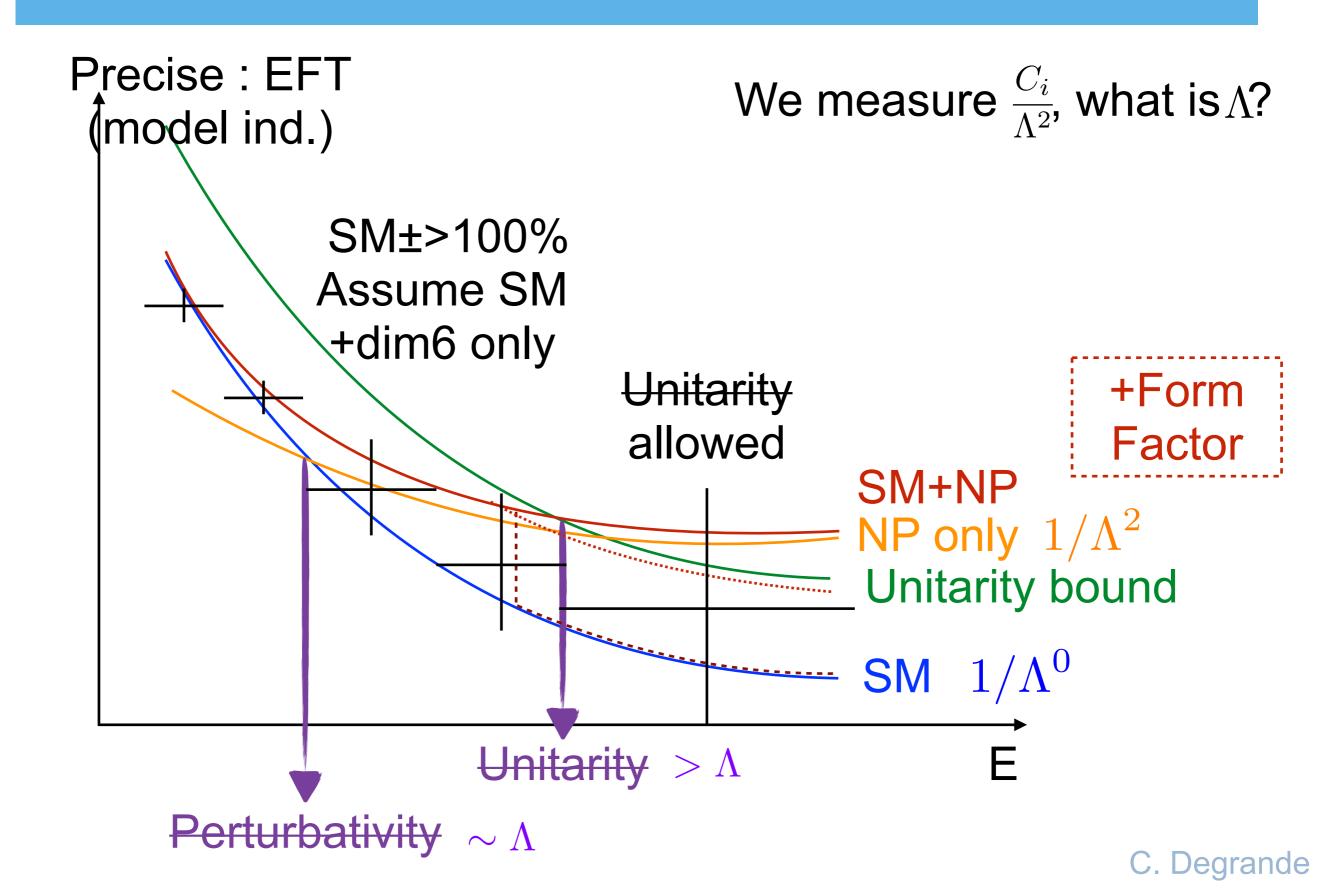
EFT & scales



EFT & scales



EFT & scales



(SM-like) Top decay

$$t \to bW \qquad \begin{array}{l} \mathcal{O}_{\phi q}^{(3)} = i \left(\phi^{\dagger} \tau^{i} D_{\mu} \phi \right) \left(\bar{Q} \gamma^{\mu} \tau^{i} Q \right) + h.c. \\ \mathcal{O}_{tW} = \bar{Q} \sigma_{\mu\nu} \tau^{i} t \tilde{\phi} W_{i}^{\mu\nu}. \end{array}$$

C. Zhang, S Willenbrock, PRD83, 034008

$$t \to b l \nu_l \qquad \mathcal{O}_{ql}^{(3)} = \left(\bar{Q}\gamma^{\mu}\tau^i Q\right) \left(\bar{l}\gamma_{\mu}\tau^i l\right)$$

J.A. Aguilar-Saavedra, NPB843, 683

+ one four-fermion operator for the hadronic decay

$$\frac{1}{2} \Sigma |M|^2 = \frac{V_{tb}^2 g^4 u(m_t^2 - u)}{2(s - m_W^2)^2} \left(1 + 2 \frac{C_{\phi q}^{(3)} v^2}{V_{tb} \Lambda^2} \right) + \frac{4 \sqrt{2} \text{Re} C_{tW} V_{tb} m_t m_W}{\Lambda^2} \frac{g^2 s u}{(s - m_W^2)^2} \\ + \frac{4 C_{ql}^{(3)}}{\Lambda^2} \frac{g^2 u(m_t^2 - u)}{s - m_W^2} + \mathcal{O}\left(\Lambda^{-4}\right)$$

Width, W helicities and ...

$$\frac{\Gamma(t \to be^+\nu_{\theta})}{GeV} = 0.1541 + \left[0.019 \frac{C_{\phi q}^{(3)}}{\Lambda^2} + 0.026 \frac{C_{tW}}{\Lambda^2} + 0 \frac{C_{ql}^{(3)}}{\Lambda^2} \right] \text{TeV}^2$$

$$\frac{\Gamma_t}{GeV} = \Gamma_{SM} + \left[0.17 \frac{C_{\phi q}^{(3)}}{\Lambda^2} + 0.23 \frac{C_{tW}}{\Lambda^2} \right] \text{TeV}^2$$

$$\Gamma^{meas} = 1.42^{+0.19}_{-0.15} \text{ GeV}$$

$$\Gamma^{***}_{SM} = 1.33 \text{ GeV} \right\} \frac{C_{\phi q}^{(3)}}{\Lambda^2} + 1.35 \frac{C_{tW}}{\Lambda^2} = 4^{+2.8}_{-2.5} \text{TeV}^{-2}$$

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{3}{8} (1 + \cos\theta)^2 F_R + \frac{3}{8} (1 - \cos\theta)^2 F_L + \frac{3}{4} \sin^2\theta F_0$$

$$F_0 = \frac{m_t^2}{m_t^2 + 2m_W^2} - \frac{4\sqrt{2}\text{Re}C_{tW}\nu^2}{\Lambda^2 V_{tb}} \frac{m_t m_W (m_t^2 - m_W^2)}{(m_t^2 + 2m_W^2)^2}$$

$$F_L = \frac{2m_W^2}{m_t^2 + 2m_W^2} + \frac{4\sqrt{2}\text{Re}C_{tW}\nu^2}{\Lambda^2 V_{tb}} \frac{m_t m_W (m_t^2 - m_W^2)}{(m_t^2 + 2m_W^2)^2}$$

$$F_R = 0$$

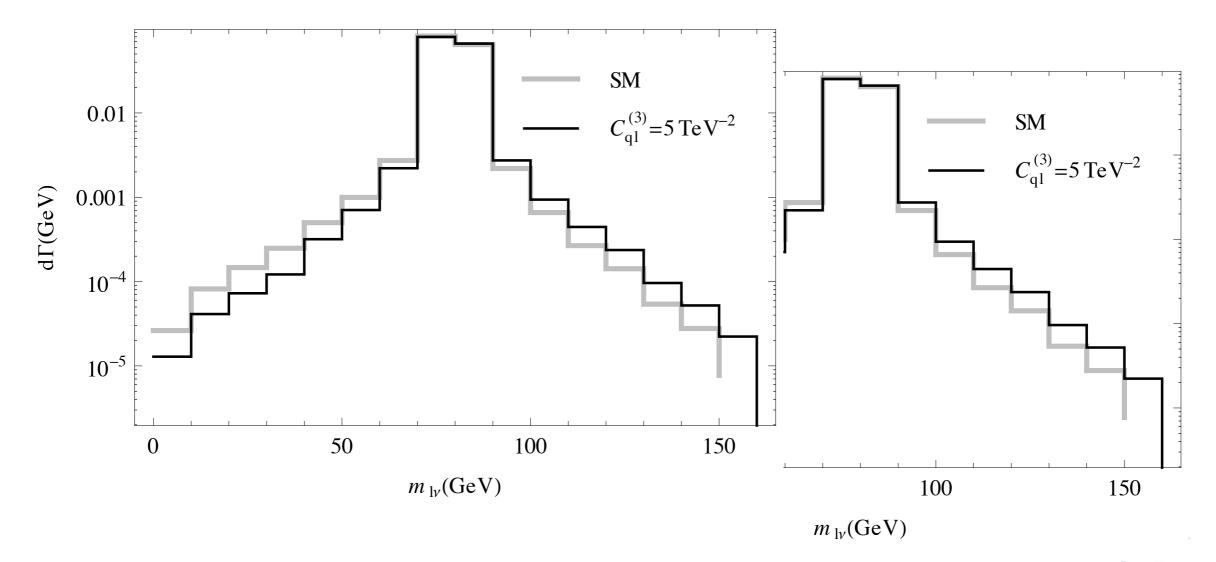
$$F_0^{SM*} = 0.687 \pm 5$$

$$F_0^{SM*} = 0.687 \pm 5$$

$$F_0^{Tereas**} = 0.66 \pm 5$$

Width, W helicities and ...

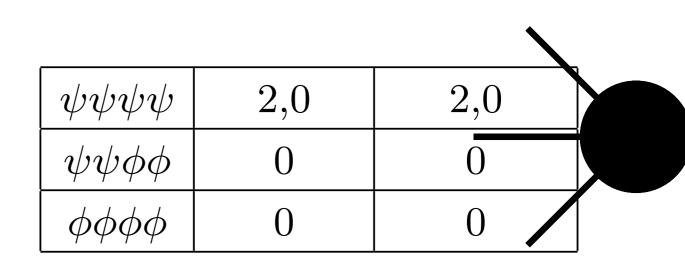
$$\frac{1}{2}\Sigma|M|^2 = \frac{V_{tb}^2 g^4 u(m_t^2 - u)}{2(s - m_W^2)^2} + \frac{4C_{ql}^{(3)}}{\Lambda^2} \frac{g^2 u(m_t^2 - u)}{s - m_W^2}$$



interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	$4,\!2$
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2



interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	$2,\!0$	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2			·	

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	$2,\!0$	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2	·		, · · ·	J

$$|M(x)|^{2} = \frac{|M_{SM}(x)|^{2}}{\Lambda^{0}} + \frac{2\Re (M_{SM}(x)M_{d6}^{*}(x))}{\Lambda^{-2}} + \frac{|M_{d6}(x)|^{2} + \dots}{\Lambda^{-4}} + \mathcal{O}(\Lambda^{-6})$$

$$\mathcal{O}(1) \qquad \sim 0 \qquad \qquad \mathcal{O}(0.1) \qquad \qquad \mathcal{O}(0.03)$$

Assuming ~0 C. Degrande

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \frac{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}{\Lambda^{-2}} + \frac{|M_{d6}(x)|^{2} + \dots}{\mathcal{O}\left(\Lambda^{-4}\right)} \\ &\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) = \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2}} \cos \alpha \\ & \text{mom} \\ &\text{mom} \\ &\text{spin} \\ &\text{Not always positive} \\ &\sigma \propto \sum_{x} |M(x)|^{2} \quad \text{if} \\ & M_{SM}(x_{1}) = 1, M_{SM}(x_{2}) = 0 \\ &M_{d6}(x_{1}) = 0, M_{d6}(x_{2}) = 1 \\ \end{split}$$

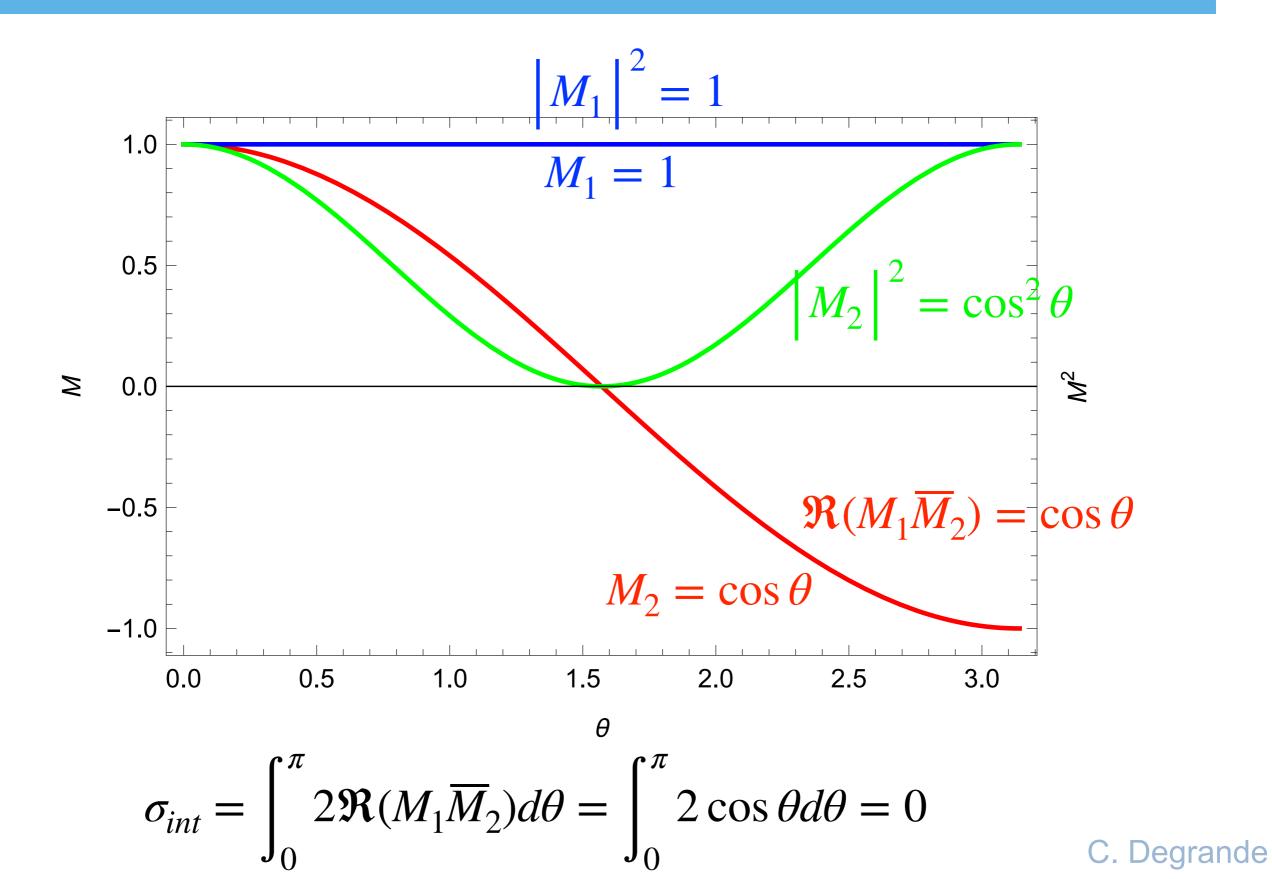
Observable dependent

$$\begin{split} |M(x)|^2 &= \boxed{|M_{SM}(x)|^2}_{\Lambda^0} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^*(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^2 + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^*(x)\right) &= \sqrt{|M_{SM}(x)|^2 |M_{d6}(x)|^2} \cos \alpha \\ & \text{mom} \\ \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_x |M(x)|^2 \quad \text{if} \\ M_{SM}(x_1) &= 1, M_{SM}(x_2) = \emptyset \\ M_{d6}(x_1) &= \emptyset, M_{d6}(x_2) = 1 \\ -1 \\ & \text{Observable dependent} \\ \end{split}$$

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ & \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) = \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom&spin} \qquad \text{Not always positive} \\ & \sigma \propto \sum_{x} |M(x)|^{2} \quad \text{if} \qquad \underbrace{M_{SM}(x_{1}) = 1, M_{SM}(x_{2}) = \cancel{A}}_{M_{d6}(x_{1}) = \cancel{A}, M_{d6}(x_{2}) = 1} \\ & \sigma_{int} = 0 \\ & \sigma_{int} \approx \pi/2 \qquad M^{2} \rightarrow M^{2} - i\Gamma M \qquad \sigma_{int} \propto \Gamma \\ & \text{C. Degrande} \\ \end{aligned}$$

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) &= \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_{x} |M(x)|^{2} \quad \text{if} \\ M_{SM}(x_{1}) &= 1, M_{SM}(x_{2}) = \cancel{M} \\ M_{d6}(x_{1}) &= \cancel{M}, M_{d6}(x_{2}) = 1 \\ & \text{of } \alpha \approx \pi/2 \\ M^{2} \rightarrow M^{2} - i\Gamma M \\ \\ \end{bmatrix} \\ \begin{array}{c} \mathcal{M}_{SM}(x) M_{d6}^{*}(x) \\ \mathcal{M}_{M}(x) &= 1 \\ \mathcal{M}_{M}(x) = 1, M_{M}(x_{2}) = \cancel{M} \\ \mathcal{M}_{M}(x_{1}) &= 1 \\ \mathcal{M}_{M}(x_{1}) &= 1 \\ \mathcal{M}_{M}(x_{1}) &= 1 \\ \mathcal{M}_{M}(x_{1}) &= 1 \\ \mathcal{M}_{M}(x_{2}) &= \cancel{M} \\ \mathcal{M}_{M}(x_{1}) &= 1 \\ \mathcal{M}_{M}(x_{2}) &= \cancel{M} \\ \mathcal{M}_{M}(x_{1}) &= 1 \\ \mathcal{M}_{M}(x_{2}) &= \cancel{M} \\ \mathcal{M}_{M}(x_{2}) &= \cancel$$

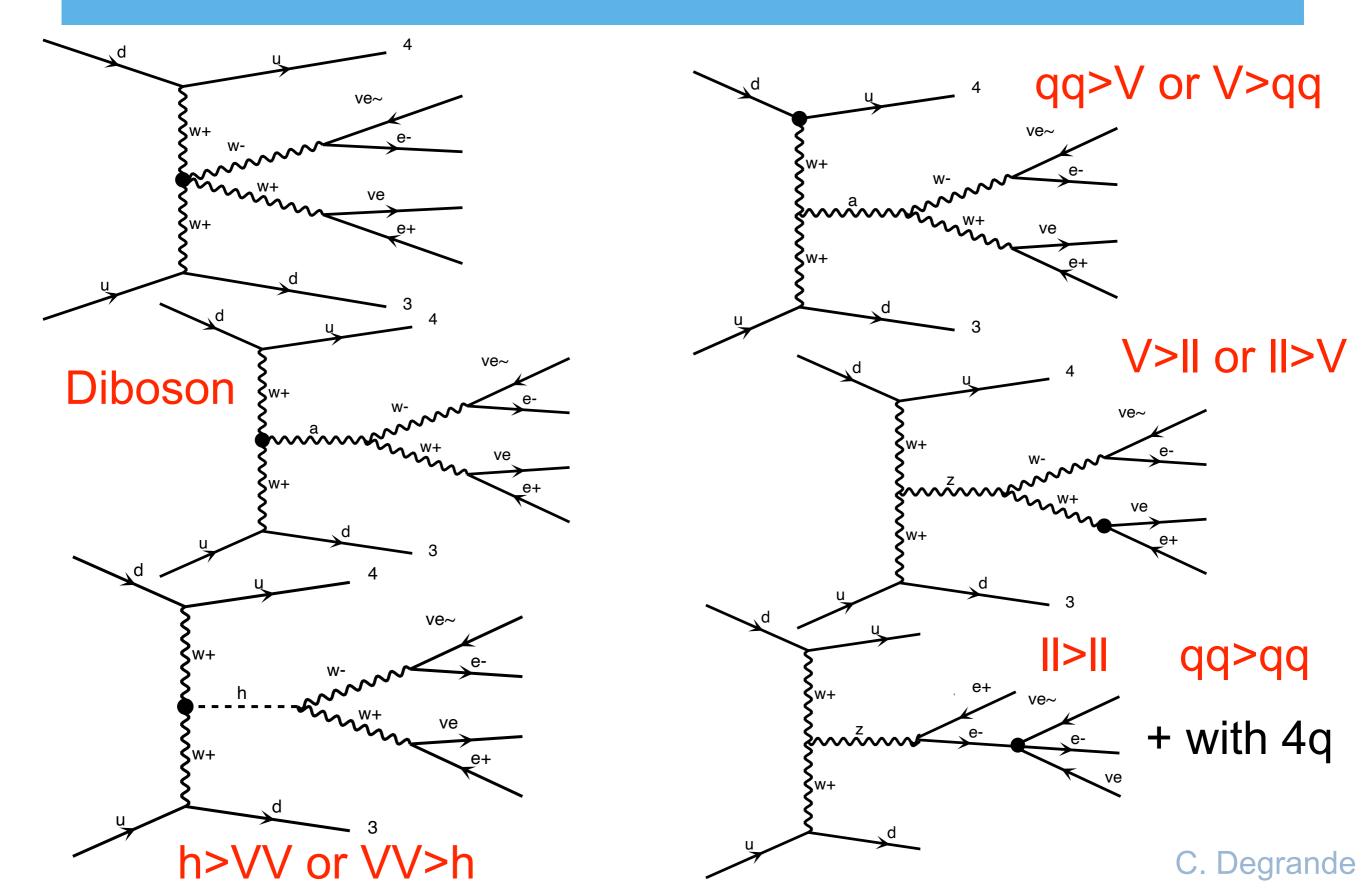
Interference suppression from phase space



VBS

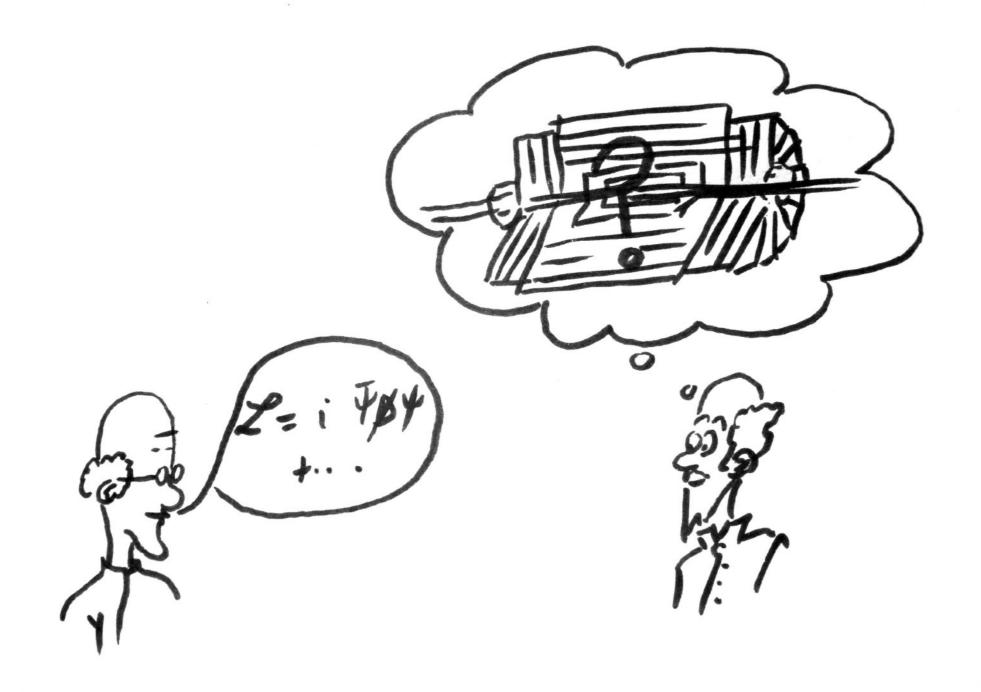
$\begin{array}{c} \text{Operators} \rightarrow \\ \downarrow \text{Processes} \end{array}$	Q_{HD}	$Q_{H\square}$	Q_{HWB}	$Q_{Hq}^{(1)}$	$Q_{Hq}^{(3)}$	Q_{HW}	Q_W	$Q_{Hl}^{(1)}$	$Q_{Hl}^{(3)}$	$Q_{ll}^{(1)}$	$Q_{qq}^{(3)}$	$Q_{qq}^{(3,1)}$	$Q_{qq}^{(1,1)}$	$Q_{qq}^{(1)}$	Q_{ll}
WW	 ✓ 		1	1	1		1	(\checkmark)	1	1					
SSWW+2j EW	1	1	1	1	1	1	1	(\checkmark)	1	1	1	1	1	1	(•
OSWW+2j EW	1	1	1	1	1	1	1	(\checkmark)	1	1	1	1	1	1	(•
WZ+2j EW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	(•
ZZ+2j EW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	(•
ZV+2j EW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
OSWW+2j QCD	1		1	1	1		1	1	1	1					
WZ+2j QCD	1		1	1	1		1	1	1	1					(•
ZZ+2j QCD	1		1	1	1			1	1	1					(•
ZV+2j QCD	~		1	1	1		1	1	1	1					

Bellan et al., 2108.03199



Automated computation for BSM

Why BSM simulation?



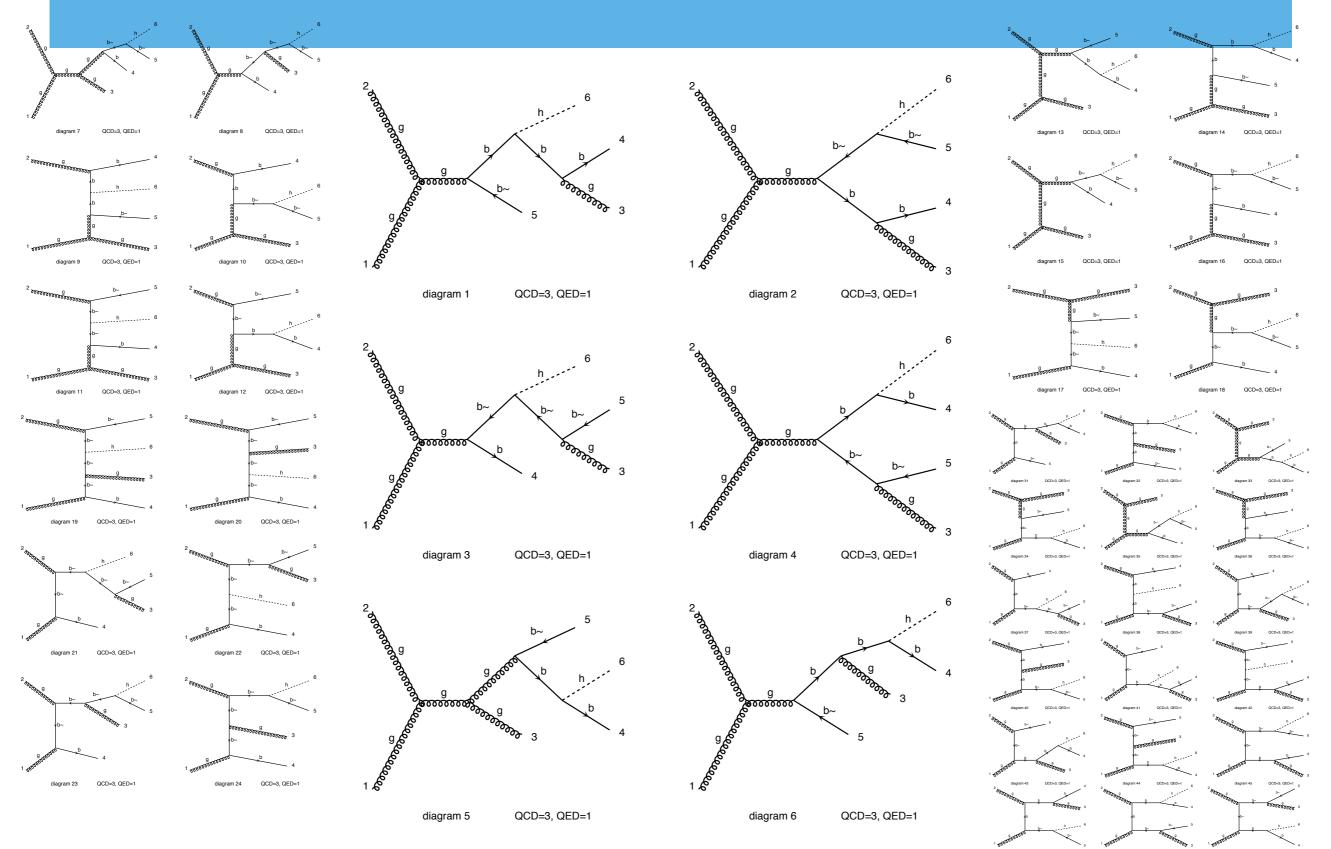
Why automated tools

- Algorithmic
- Less error prone

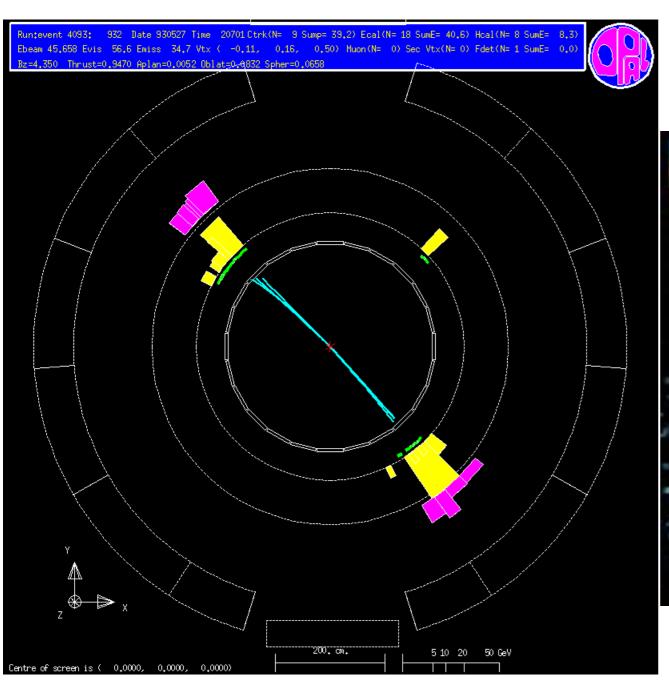
• Long $f^{abc}G^a_{\mu\nu}G^{b\nu\rho}G^{c\mu}_{\rho} \ni 4$ gluons vertex

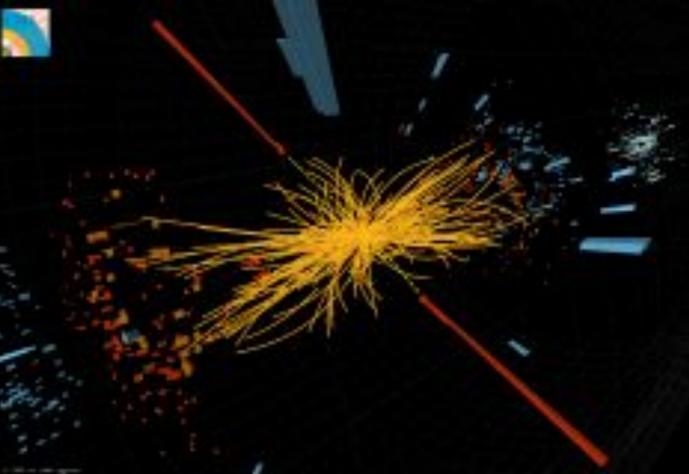
 $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_2^{\mu_3} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_3} p_2^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_3} p_3^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_3} p_3^{\mu_4} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_3} \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_3} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_3} \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_3^{\mu_4} p_4^{\mu_4} p_4^{\mu$ $6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_1 \cdot p_4 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_3 \eta_{\mu_1,\mu_2} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_3 \eta_{\mu_3,\mu_4} p_3 \cdot p_$ $6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_4 \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_2^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_2 \cdot p_4 \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_2^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_2^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_2} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_2^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_3,\mu_4} p_3 \cdot p_4 \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} \eta_{\mu$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_2} p_3^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_2} p_3^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_2} p_3^{\mu_4} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} p_4^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} \eta_{\mu_1,\mu_3} + 6ig_s f_{a_1,a_4,a} p_1^$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_4} p_4^{\mu_2} \eta_{\mu_1,\mu_3} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_2^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\bar{\mu}_3} p_3^{\bar{\mu}_2} \eta_{\mu_1,\mu_4} +$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_2} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_1^{\mu_3} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_3} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_3} p_2^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_3} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} p_1^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_4,a} p_1^{\mu_4} p_1^{\mu$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_2} p_4^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_2^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_1} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_2} p_3^{\mu_3} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_2^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_1} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_3^{\mu_4} \eta_{\mu_1,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_2^{\mu_4} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_4} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_4} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} p_1^{\mu_4} p_3^{\mu_4} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_2,a} f_{a_3,a_4,a} p_1^{\mu_4} p_3^{\mu_4} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} p_1^{\mu_4} p_2^{\mu_4} \eta_{\mu_2,\mu_4,a} + 6ig_s f_{a_1,a_2,a} p_2^{\mu_4} \eta_{\mu_2,\mu_4,a} + 6ig_s f_{a_1,a$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_1} p_3^{\mu_4} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_4^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_4} p_3^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_4} p_4^{\mu_1} \eta_{\mu_2,\mu_3} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_4} p_3^{\mu_4} p_4^{\mu_4} p_4^{\mu_4}$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_4} p_4^{\mu_1} \eta_{\mu_2,\mu_3} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_1^{\mu_3} p_2^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_3} p_3^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_3} p_3^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_3^{\mu_3} p_3^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_3^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_4,a} f_{a_2,a} p_3^{\mu_2} \eta_{\mu_2,\mu_4} -$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_3} p_4^{\mu_1} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_1} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_1} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_1} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_3} p_4^{\mu_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_1} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_1} p_4^{\mu_2} p_4^{\bar{\mu}_1} \eta_{\mu_2,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_1} p_4^{\bar{\mu}_2} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_2} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_2} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_2} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\bar{\mu}_3} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a} p_2^{\bar{\mu}_3} p_4^{\bar{\mu}_3} \eta_{\mu_2,\mu_4} +$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_1} p_4^{\mu_3} \eta_{\mu_2,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_1^{\mu_2} p_3^{\mu_1} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_2^{\mu_1} p_3^{\mu_2} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_3^{\mu_1} p_3^{\mu_2} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_3^{\mu_1} p_3^{\mu_2} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_3^{\mu_1} p_3^{\mu_2} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_4,a} f_{a_2,a_4,a} p_3^{\mu_2} p_3^{\mu_2} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_4,a} p_3^{\mu_2} \eta_{\mu_4$ $6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} p_1^{\mu_2} p_4^{\mu_1} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_2} p_4^{\mu_1} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_1} p_4^{\mu_2} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_1} p_4^{\mu_2} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} p_2^{\mu_2} p_4^{\mu_2} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} p_3^{\mu_2} p_4^{\mu_2} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} p_4^{\mu_2} p_4^{\mu_2} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_2,a} p_4^{\mu_2} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_2,a} f_{a_2,a} p_4^{\mu_3} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_2,a} p_4^{\mu_3} \eta_{\mu_3,\mu_4} - 6ig_s f_{a_1,a_2,a$ $6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} p_3^{\mu_1} p_4^{\mu_2} \eta_{\mu_3,\mu_4} + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_4} \eta_{\mu_2,\mu_3} p_1 \cdot p_2 - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_4} \eta_{\mu_2,\mu_3} p_1 \cdot p_2 - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_2} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_2} \eta_{\mu_2,\mu_4} p_1 \cdot p_2 + 6ig_s f_{a_1,a_2,a} f_{a_2,a_4,a} \eta_{\mu_2,\mu_4} \eta_{\mu_2,\mu_4}$ $6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_4} \eta_{\mu_2,\mu_3} p_1 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_1 \cdot p_4 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_2 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_2 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_2 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_3 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_3 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_3 \cdot p_3 + 6ig_s f_{a_1,a_4,a} f_{a_2,a_3,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_3 \cdot p_3$ $6ig_s f_{a_1,a_3,a} f_{a_2,a_4,a} \eta_{\mu_1,\mu_4} \eta_{\mu_2,\mu_3} p_2 p_4 + 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_4} \eta_{\mu_2,\mu_3} p_3 p_4 - 6ig_s f_{a_1,a_2,a} f_{a_3,a_4,a} \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} p_3 p_4$

Many diagrams

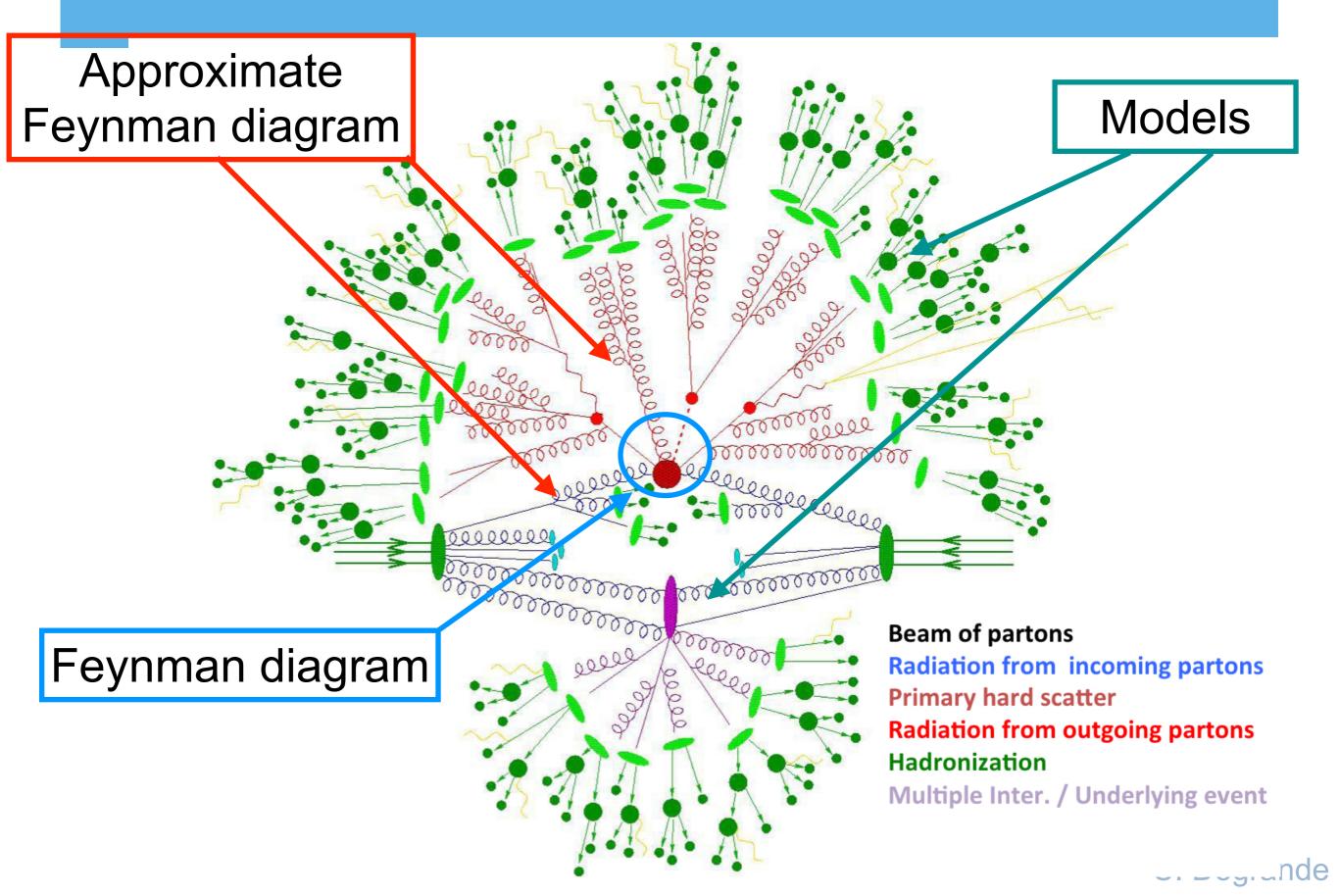


Hadron colliders

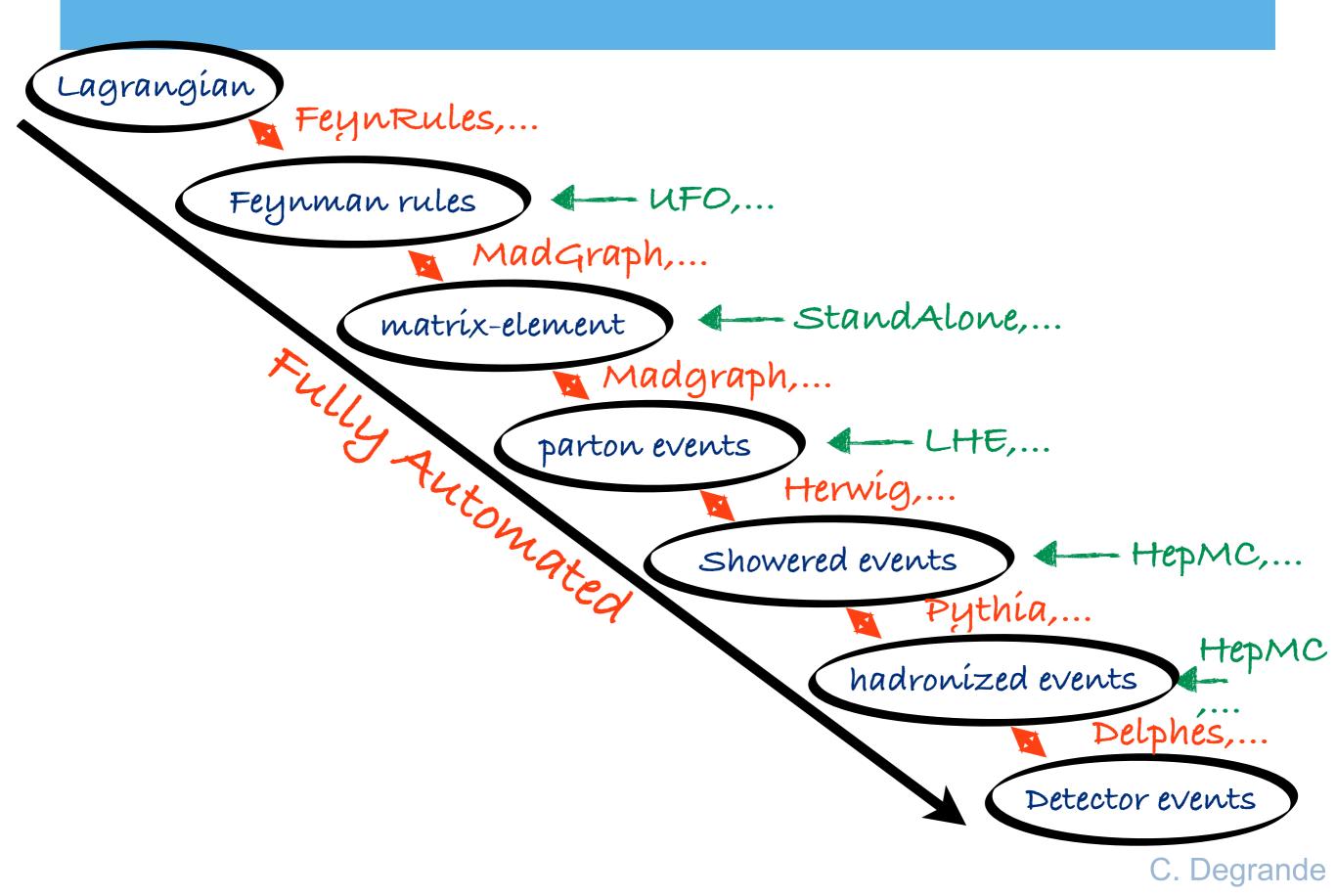




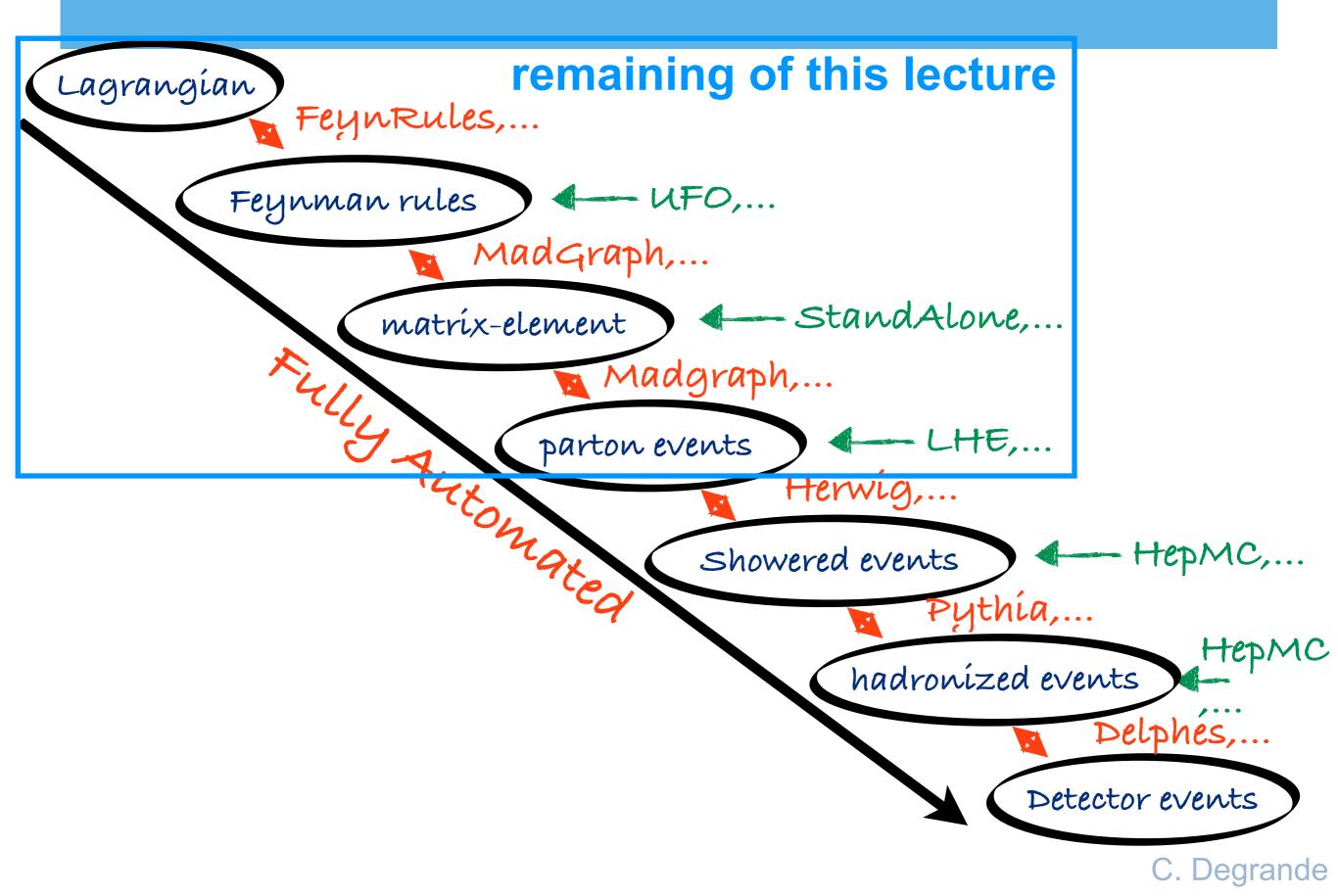
Hadron collider event



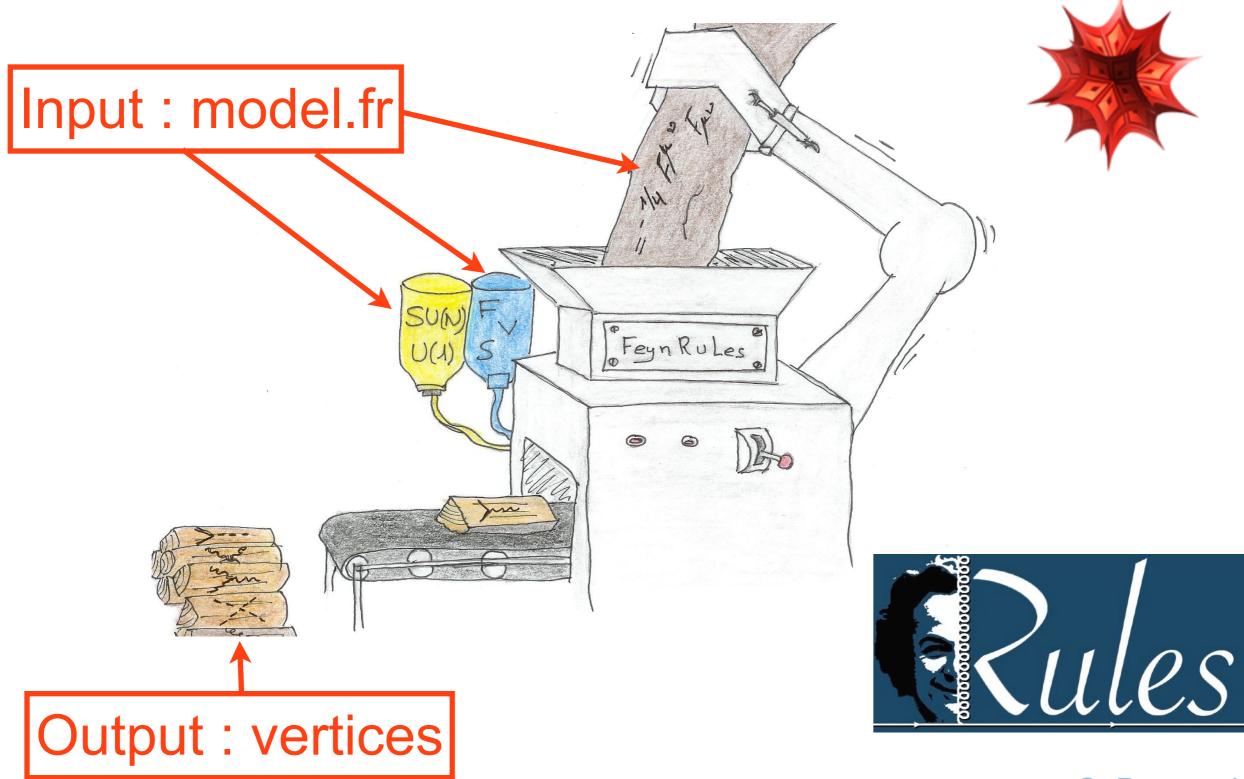
BSM simulation



BSM simulation



FeynRules in a nutshell

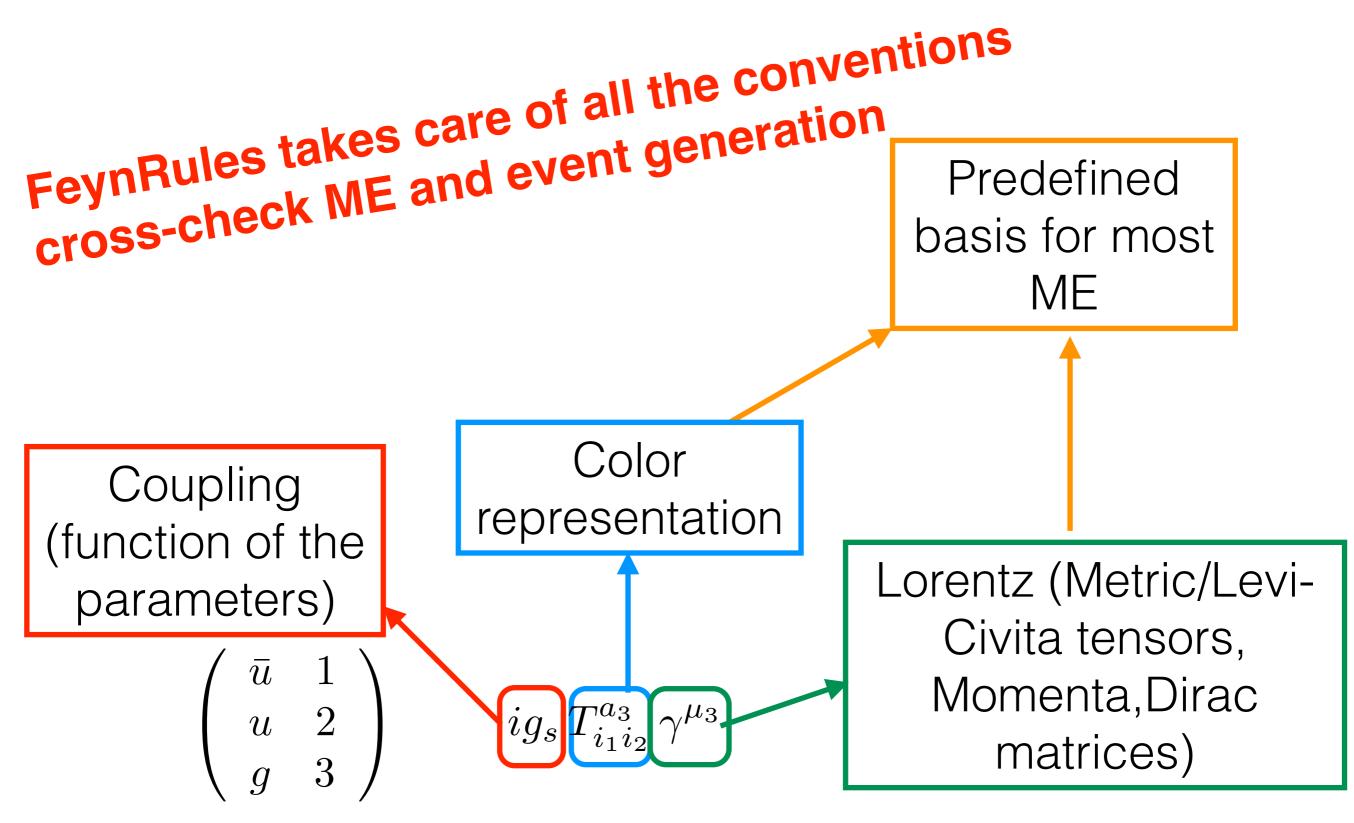


Feynman rules outputs

FeynRules outputs can be used directly by event generators

UFO : output with the full information used by several generators

Feynman Rules



UFO

- Generic output with the full model information
 - coupling_orders.py, parameters.py, particles.py, write_param_card.py, __init__.py,
 - vertices.py, couplings.py, lorentz.py

No basis, all the lorentz structures of the model

- decays.py
- CT_vertices.py, CT_couplings.py (For NLO)
- Python module used in MadGraph, Herwig, Gosam, Sherpa

model file

(**************** This is a template model file for FeynRules **********)

```
IndexRange[ Index[Generation] ] = Range[3]
```

IndexFormat[Generation, f]

```
(***** Parameter list *****)
```

```
M$Parameters = {
```

(***** Gauge group list *****)

```
M$GaugeGroups = {
```

```
(***** Particle classes list *****)
```

```
M$ClassesDescription = {
```

Definition of variables in Mathematica syntaxe

Model information

```
M$ModelName = "my_new_model";

M$Information = {

    Authors -> {"Mr. X", "Ms. Y"},

    Institutions -> {"UC Louvain"},

    Emails -> {"X@uclouvain.be", "Y@uclouvain.be},

    Date -> "01.03.2013",

    References -> {"reference 1", "reference 2"},

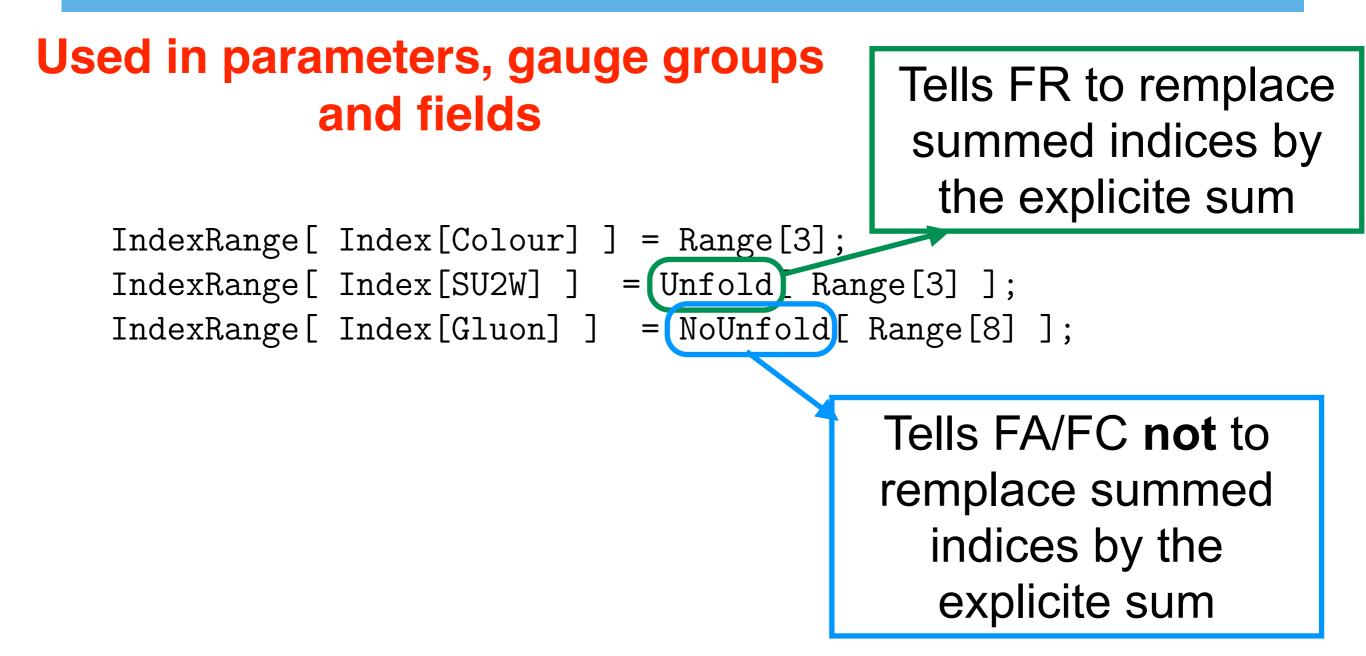
    URLs -> {"http://feynrules.irmp.ucl.ac.be"},

    Version -> "1.0"

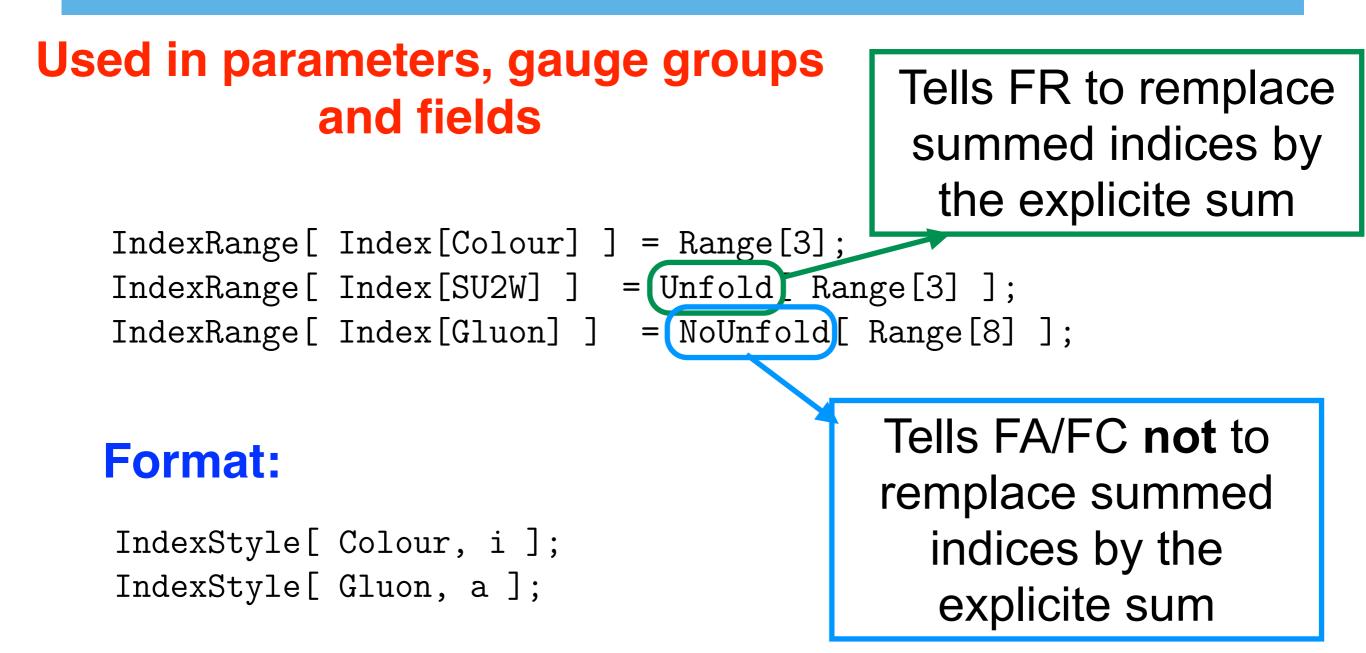
    };
```

Good practice for credit, issue(s) tracking

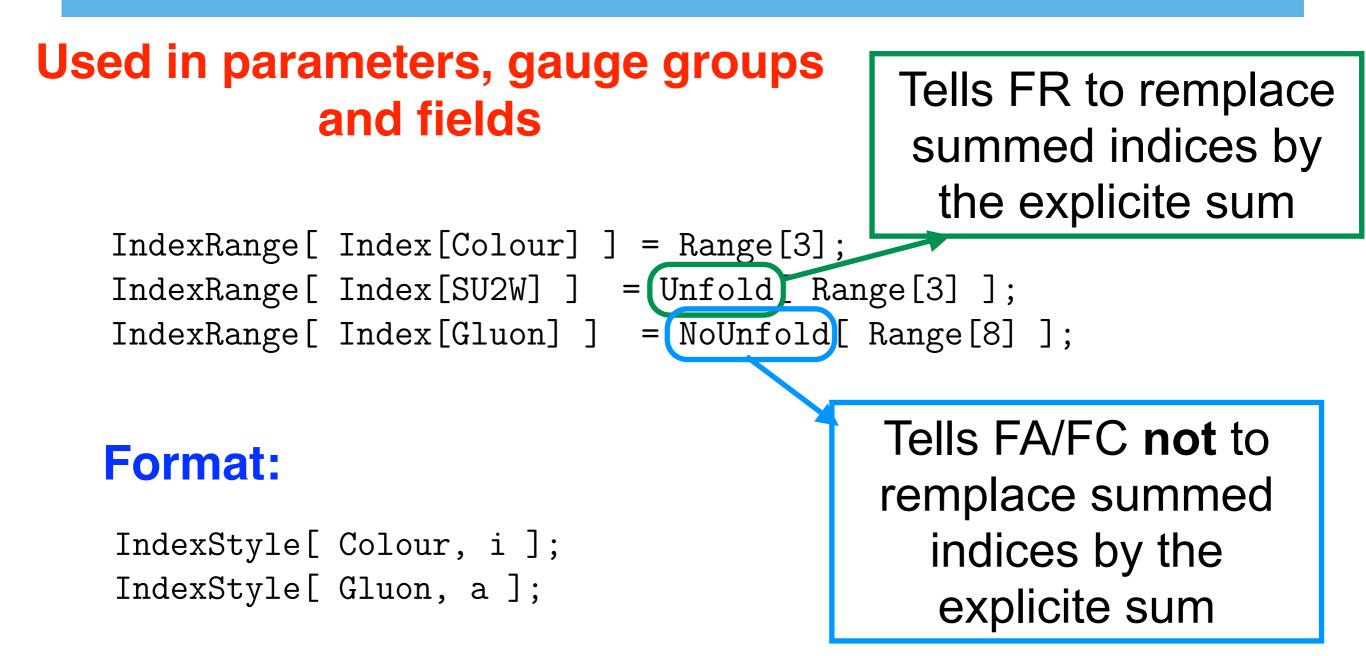
Indices definition



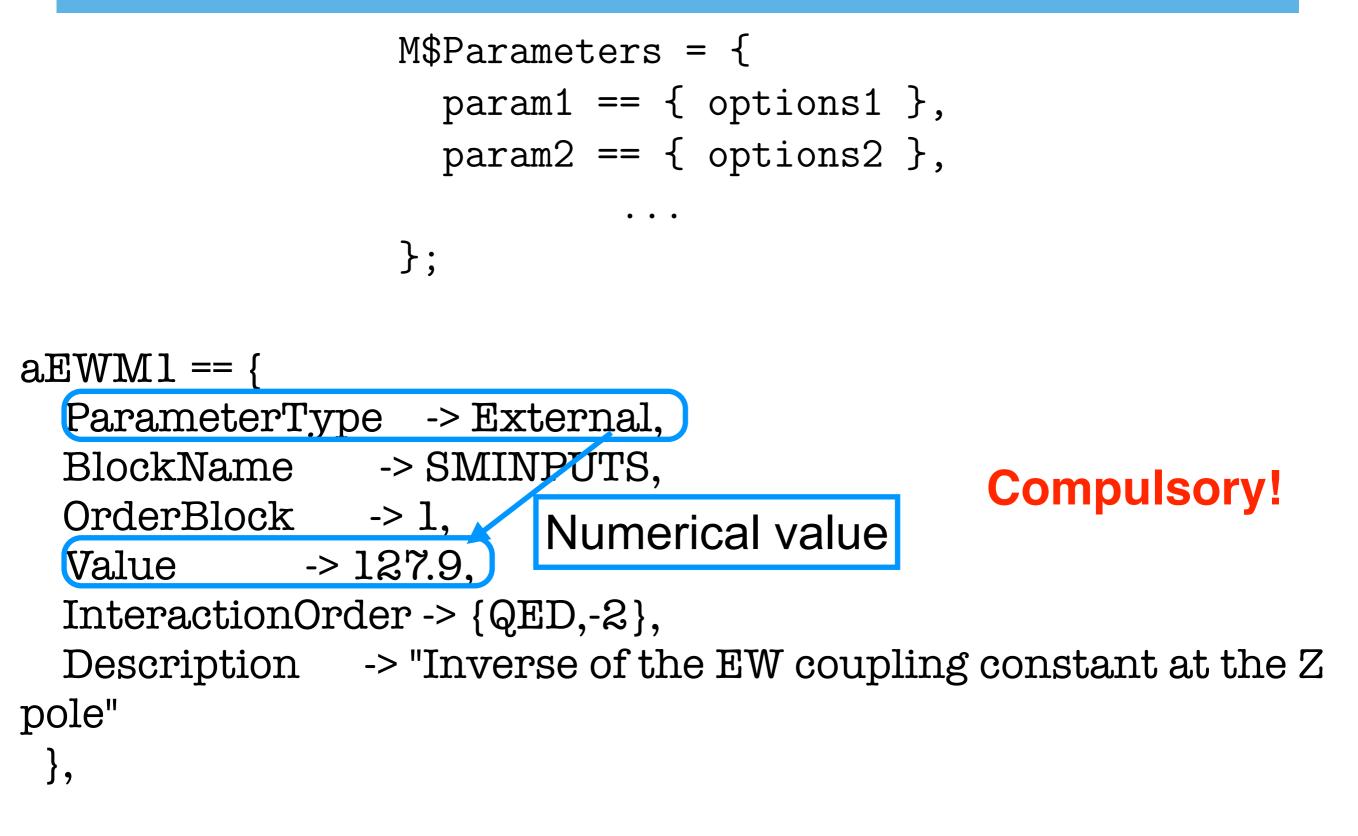
Indices definition



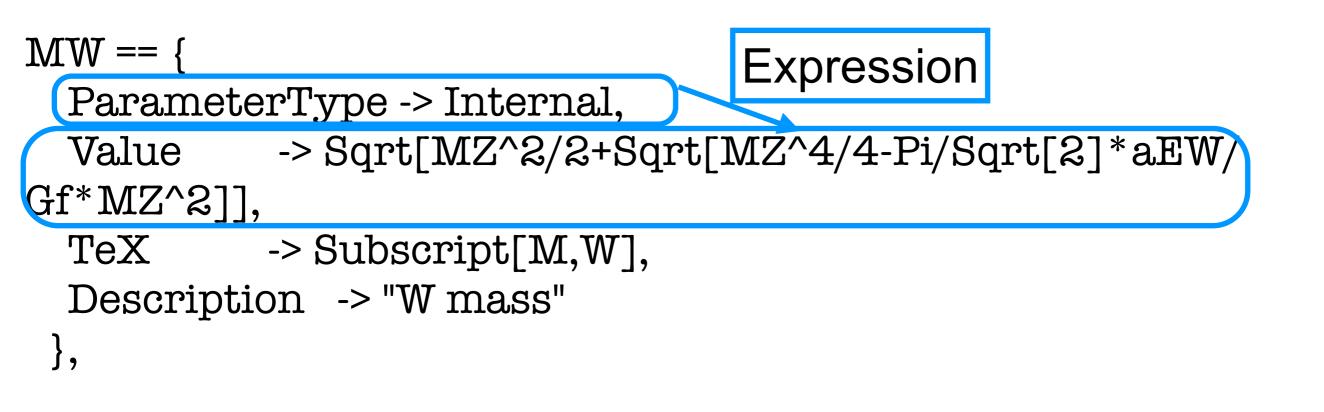
Indices definition

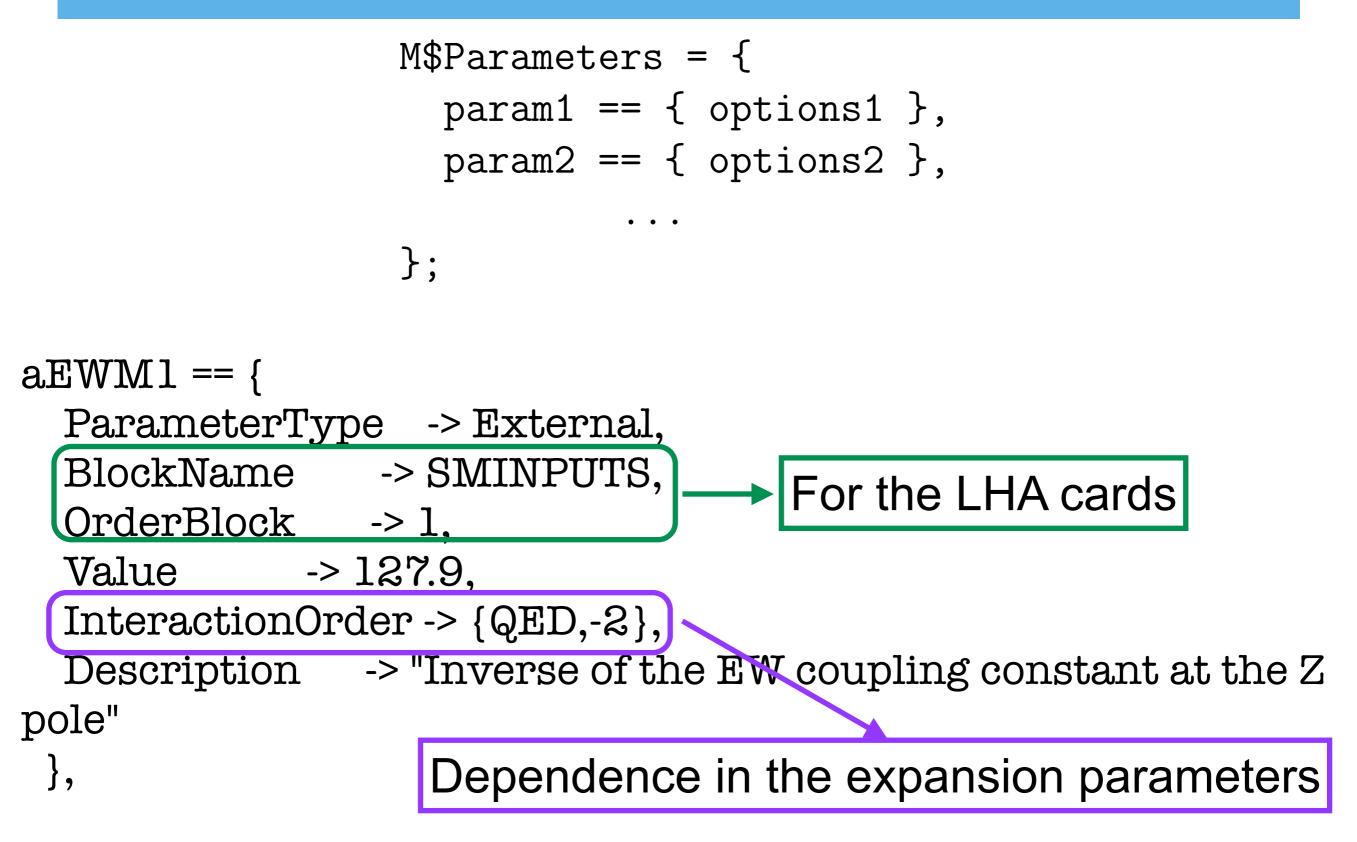


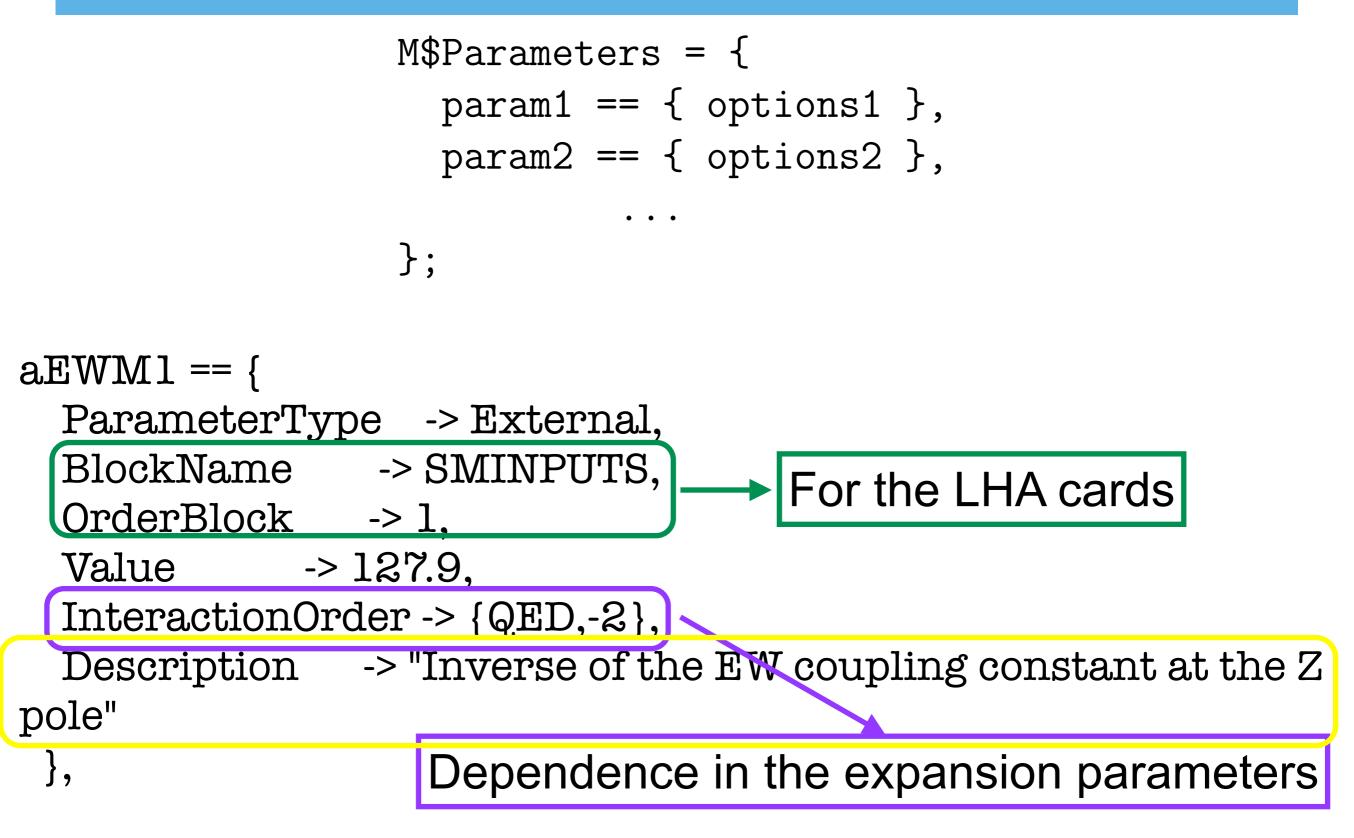
Predefined indices: Lorentz, Spin, Spin1, Spin2



```
M$Parameters = {
    param1 == { options1 },
    param2 == { options2 },
    ...
};
```







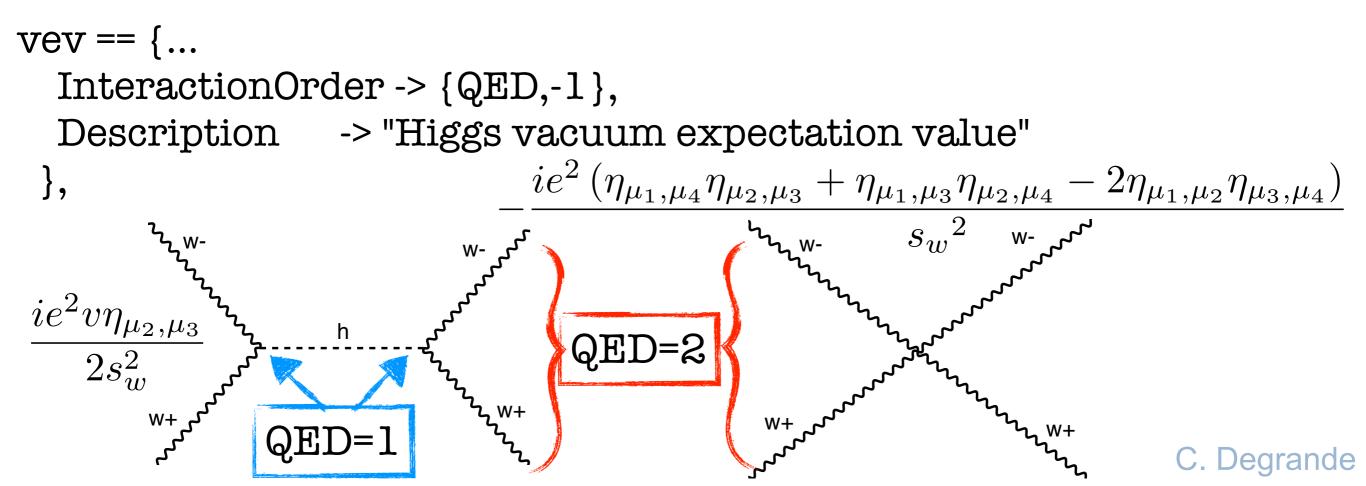
In the SM :QCDthe power of g_s QEDthe power ofe

```
aEWM1 == { ...
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},
```

```
vev == {...
InteractionOrder -> {QED,-1},
Description -> "Higgs vacuum expectation value"
},
```


In the SM :QCDthe power of g_s QEDthe power ofe

```
aEWM1 == { ...
InteractionOrder -> {QED,-2},
Description -> "Inverse of the EW coupling constant at the Z pole"
},
```



```
In the SM : QCD the power of g_s
              QED the power of e
vev == {...
  InteractionOrder -> {QED,-1},
  Description -> "Higgs vacuum expectation value"
 },
yu == {...
  InteractionOrder -> {QED, 1},
  Description -> "Up-type Yukawa couplings"
 },
                    Such that masses have QED=0
          However y_t is not a small parameter!
```

M\$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2}};

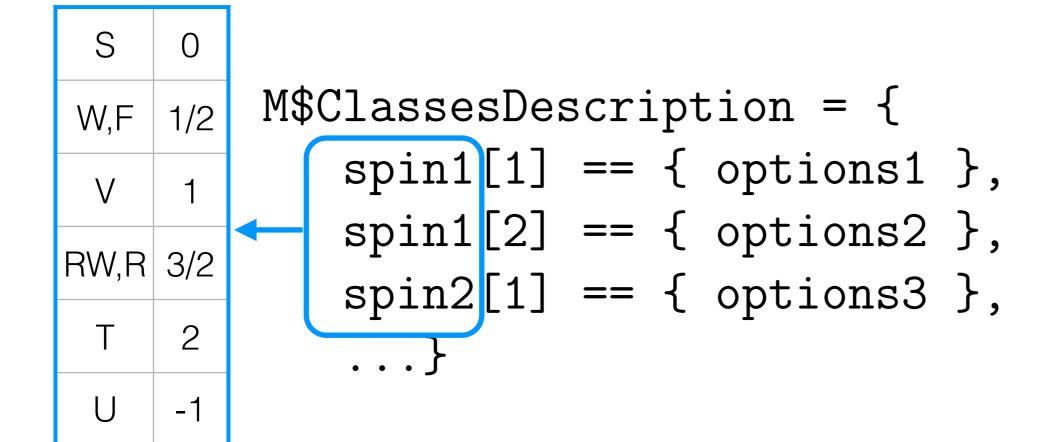
$$\begin{split} \text{M}\$ \text{InteractionOrderHierarchy} = \{ \begin{array}{l} \{\text{QCD}, 1\}, \\ \{\text{QED}, 2\}\}; \\ \\ \mathcal{L} = \mathcal{L} + \sum_i \frac{1}{\Lambda^2} \mathcal{O}_i + \mathcal{O}\left(\Lambda^{-4}\right) \\ \\ \text{NP} \quad \text{the power of } \Lambda^{-2} \\ \end{array} \end{split}$$

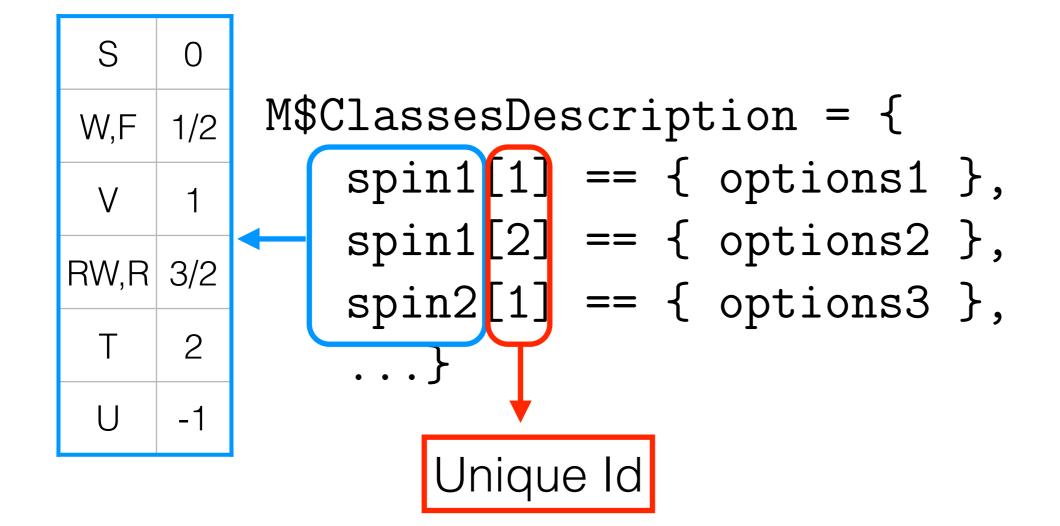
M\$InteractionOrderHierarchy = { {QCD, 1}, $\{QED, 2\}\};$ $g_s \sim e^2$ $\mathcal{L} = \mathcal{L} + \sum_{i} \frac{1}{\Lambda^2} \mathcal{O}_i + \mathcal{O}\left(\Lambda^{-4}\right)$ the power of Λ^{-2} NP $,\{NP,2\}$

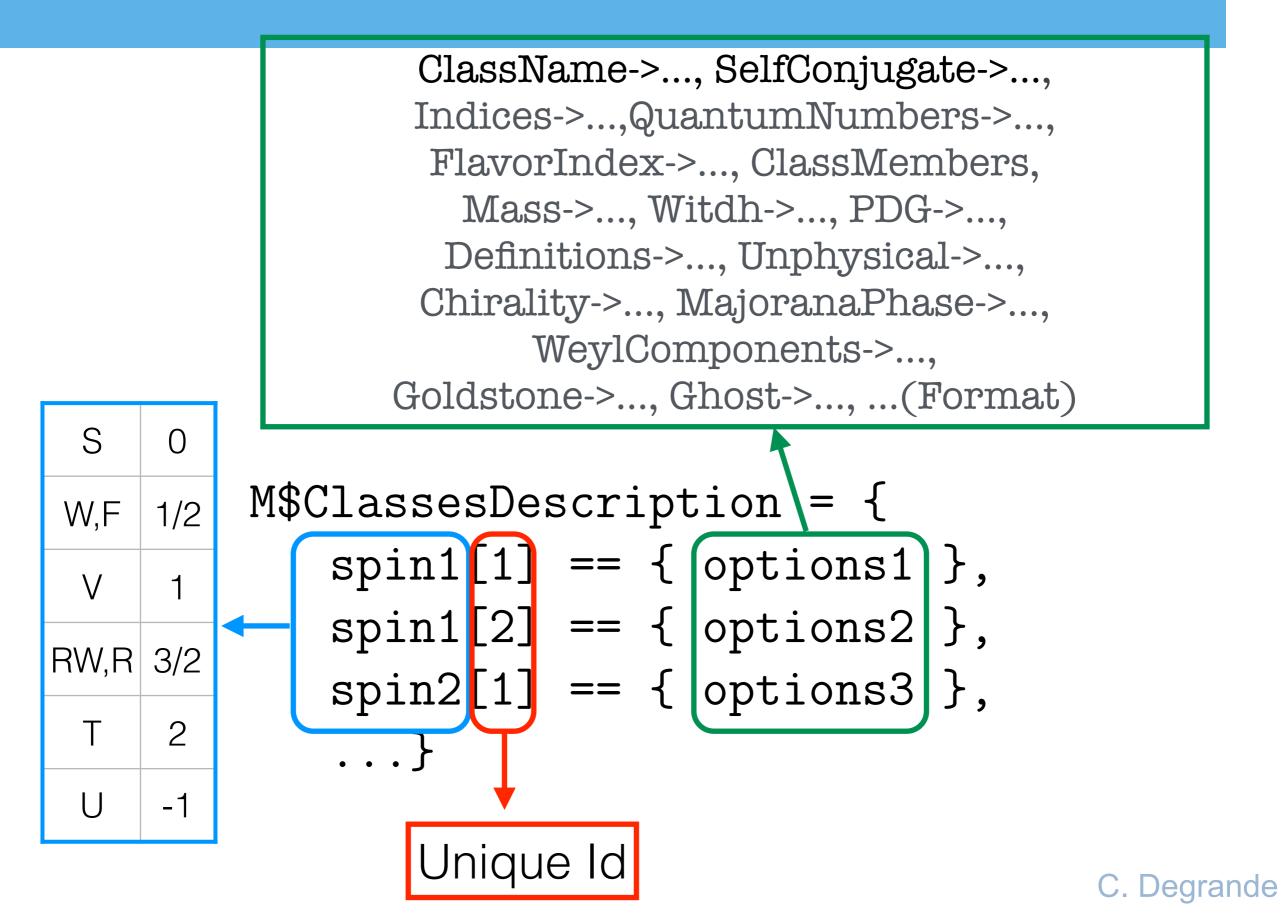
M\$InteractionOrderLimit = { {NP,1 } };

Max power per diagram of Λ^{-2} is 1

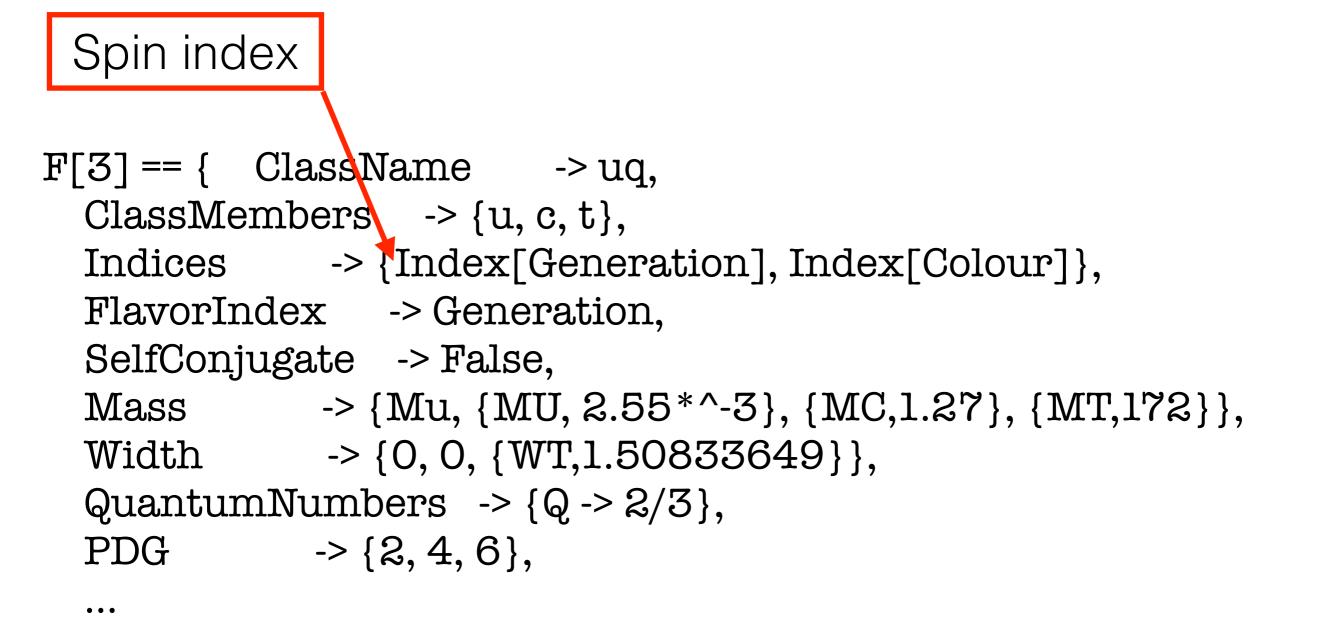
M\$ClassesDescription = {
 spin1[1] == { options1 },
 spin1[2] == { options2 },
 spin2[1] == { options3 },
 ...}







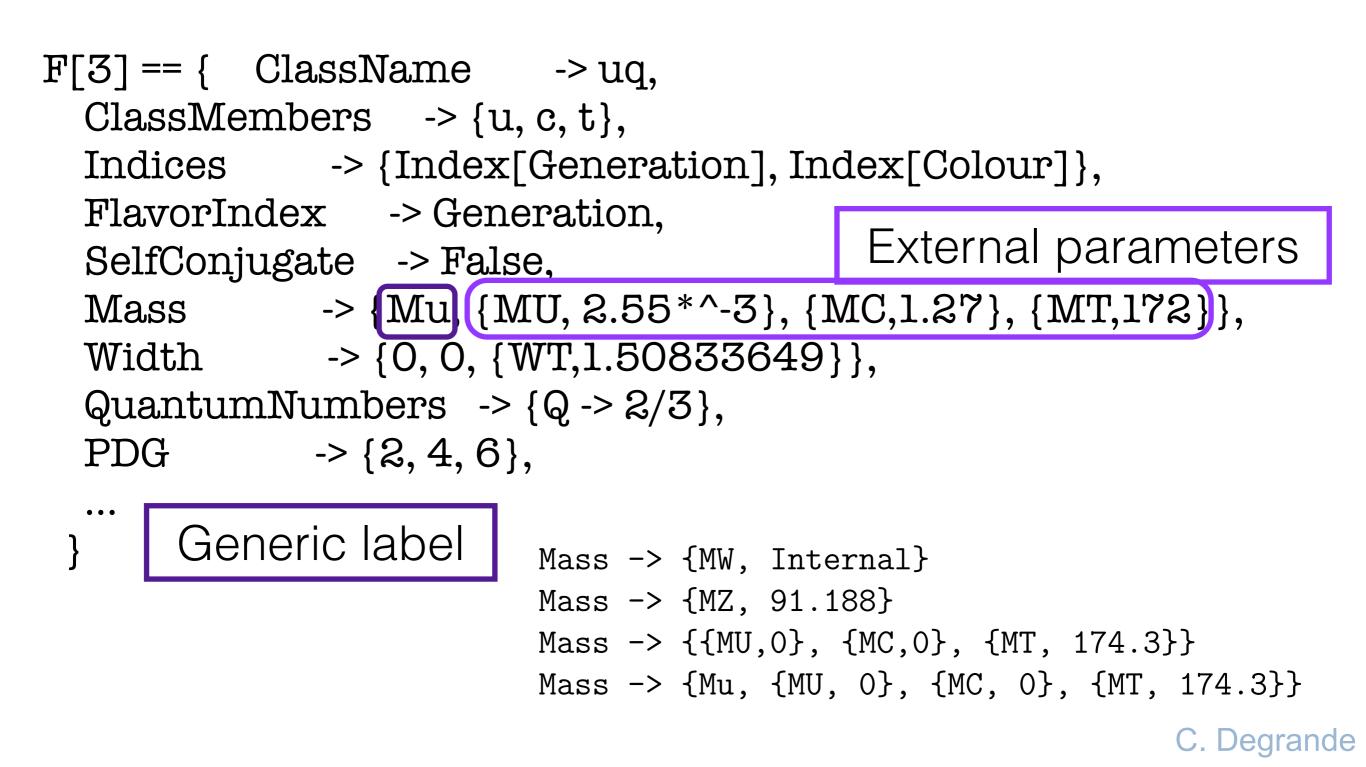
```
\label{eq:F[3] == { ClassName -> uq, \\ ClassMembers -> {u, c, t}, \\ Indices -> {Index[Generation], Index[Colour]}, \\ FlavorIndex -> Generation, \\ SelfConjugate -> False, \\ Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, \\ Width -> {0, 0, {WT,1.50833649}}, \\ QuantumNumbers -> {Q -> 2/3}, \\ PDG -> {2, 4, 6}, \\ \end{array}
```



	Generation index distinguishes
$F[3] == \{ ClassName -> uq, \}$	the class members
ClassMembers -> {u, c, t},	
Indices -> {Index[Genera	tion] Index[Colour]},
FlavorIndex -> Generation,	
SelfConjugate -> False,	
Mass -> {Mu, {MU, 2.55)*^-3}, {MC,1.27}, {MT,172}},
Width -> {0, 0, {WT, 1.50	833649}},
QuantumNumbers $\rightarrow \{Q \rightarrow 2/3\},\$	
PDG $-> \{2, 4, 6\},$	

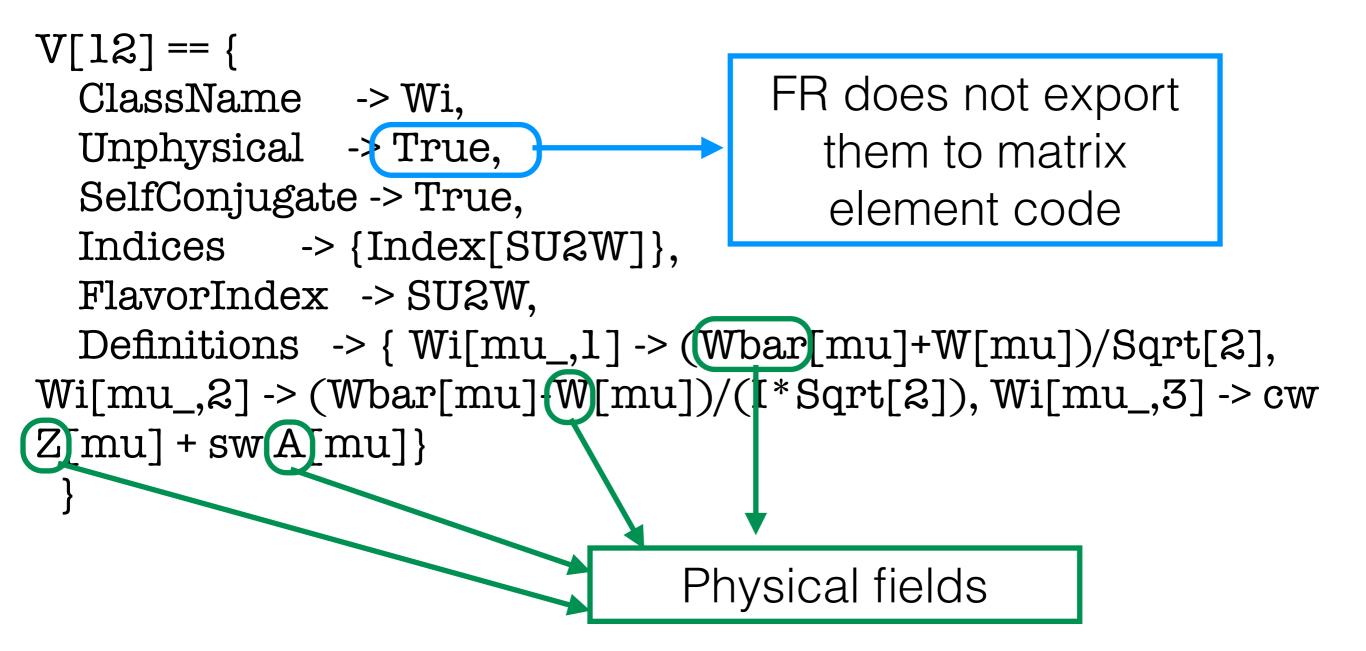
. . .

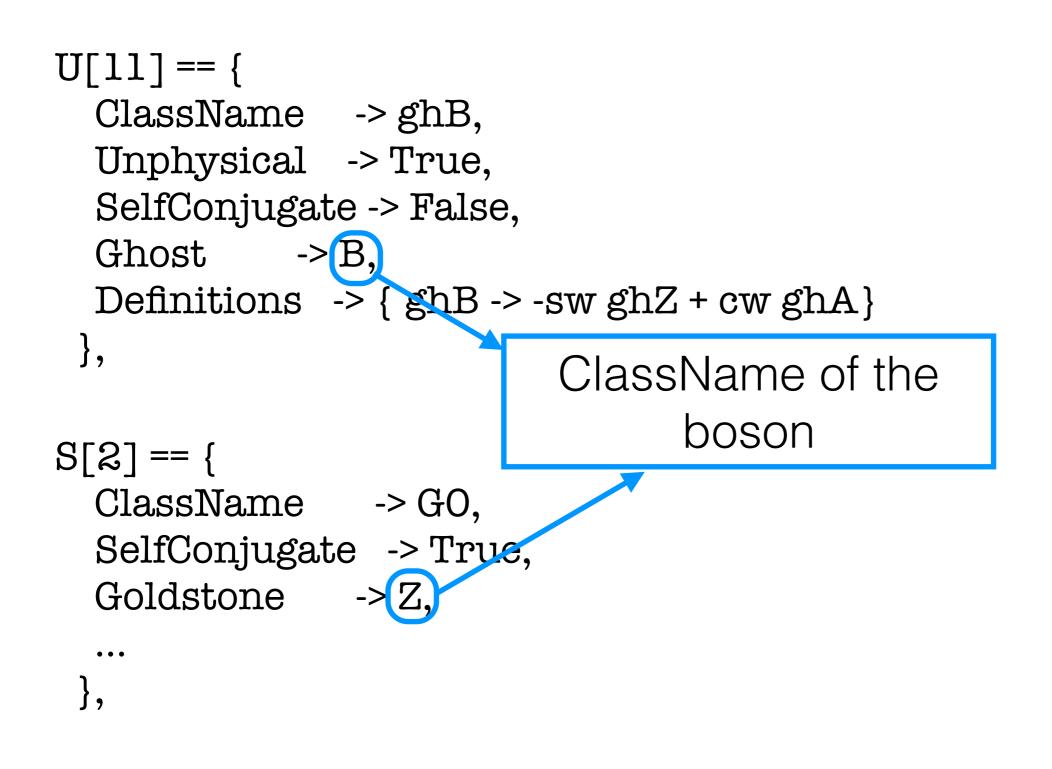
 $\label{eq:F[3] == { ClassName -> uq, \\ ClassMembers -> {u, c, t}, \\ Indices -> {Index[Generation], Index[Colour]}, \\ FlavorIndex -> Generation, \\ SelfConjugate -> False, \\ Mass -> {Mu, {MU, <math>2.55*^{-3}$, {MC,1.27}, {MT,172}}, \\ Width -> {0, 0, {WT,1.50833649}}, \\ QuantumNumbers -> {Q -> 2/3}, \\ PDG -> {2, 4, 6}, \\ \end{tabular}



```
F[3] == \{ ClassName \rightarrow uq, \}
  ClassMembers \rightarrow {u, c, t},
  Indices -> {Index[Generation], Index[Colour]},
  FlavorIndex -> Generation,
  SelfConjugate -> False,
  Mass -> \{Mu, \{MU, 2.55^{*}, 3\}, \{MC, 1.27\}, \{MT, 172\}\},\
  Width \rightarrow \{0, 0, \{WT, 1.50833649\}\},\
  QuantumNumbers -> \{Q -> 2/3\},\
  PDG
              -> {2, 4, 6},
                       Not used in FR but by
                           following codes
```

Interaction eigenstates





```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
 GaugeBoson -> G.
  StructureConstant -> f,
 Representations \rightarrow {T,Colour},
  SymmetricTensor -> dSUN
```

```
C. Degrande
```

```
M$GaugeGroups = {
 U1Y == {
 Abelian -> True
 CouplingConstant -> g1,
  GaugeBoson
                 -> B.
             -> Y
  Charge
 },...
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
  GaugeBoson -> G,
  StructureConstant -> f,
 Representations \rightarrow {T,Colour},
  SymmetricTensor -> dSUN
```

```
C. Degrande
```

```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
 SU3C == {
 Abelian -> False,
  CouplingConstant -> gs,
  GaugeBoson -> G,
 StructureConstant -> f,
 Representations \rightarrow {T,Colour},
  SymmetricTensor -> dSUN
```

```
M$GaugeGroups = {
U1Y == {
 Abelian -> True,
 CouplingConstant -> g1,
 GaugeBoson -> B,
 Charge -> Y
 },...
 SU3C == {
 Abelian -> False,
 CouplingConstant -> gs,
  GaugeBoson -> G,
  StructureConstant -> f,
 Representations \rightarrow {T,Colour}
 SymmetricTensor ->dSUN
                               Associated index
             Generator label
                                                  C. Degrande
```

FS[A, mu, nu(, a)]
$$F_{\mu\nu}^a = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^a{}_{bc} A^b_\mu A^c_\nu$$
abelian

DC[phi, mu]
$$\square D_{\mu}\phi = \partial_{\mu}\phi - igA^{a}_{\mu}T_{a}\phi$$

Lagrangian

$$\mathcal{L}^{\mathcal{QCD}} \equiv -\frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + i \bar{d} D d$$

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a] + I dqbar.Ga[mu].DC[dq, mu]

FeynRules creates the "anti"-particle name

Dot to avoid commuting the fermions

dqbar Ga[mu] T[a].dq

 \rightarrow Ga[mu,s,r] T[a,i,j] dqbar[s,f,i].dq[r,f,j]

FeynRules restores the indices internally

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

All the model files should be loaded at once

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

 $\begin{array}{ccc} A & 1 \\ GP & 2 \\ GP^{\dagger} & 3 \end{array}, ie \left(\mathbf{p}_{2}^{\mu} \right)$ $\langle 0 | i \mathcal{L}_I | \text{fields} \rangle$

All momenta are incoming

In Mathematica :

Loading Feynrules

\$FeynRulesPath = SetDirectory[<the address of the package>]; << FeynRules`</pre>

Loading the model

LoadModel[< file.fr >, < file2.fr >, ...]

Extracting the Feynman rules

vertsQCD = FeynmanRules[LQCD];

Checking the Lagrangian

CheckKineticTermNormalisation[L] CheckMassSpectrum[L]

Outputting the Lagrangian

WriteUFO[L]

 $\left\{ \begin{pmatrix} A & 1 \\ GP & 2 \\ GP^{\dagger} & 3 \end{pmatrix}, ie \left(p_{2}^{\mu 1} - p_{3}^{\mu_{1}}\right) \right\}$ $\langle 0 | i \mathcal{L}_{I} | \text{fields} \rangle$ All momenta are incoming

Checks

CheckHermiticity[L, options]

CheckDiagonalKineticTerms[L, options]

CheckKineticTermNormalisation[L, options]

$$\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^{2} \phi^{2} \qquad \frac{1}{2} \bar{\lambda} i \partial \!\!\!/ \lambda - \frac{1}{2} m \bar{\lambda} \lambda \qquad - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^{2} A_{\mu} A^{\mu} \\ \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^{2} \phi^{\dagger} \phi \qquad \bar{\psi} i \partial \!\!\!/ \psi - m \bar{\psi} \psi \qquad - \frac{1}{2} F^{\dagger}_{\mu\nu} F^{\mu\nu} - m^{2} A^{\dagger}_{\mu} A^{\mu}$$

CheckMassSpectrum[L, options]

Toolbox

ExpandIndices[L, options] GetKineticTerms[L, options] GetMassTerms[L, options] GetQuadraticTerms[L, options] GetInteractionTerms[L, options] SelectFieldContent[L, list]