
Electroweak and Higgs phenomenology 
including EFT 
Celine Degrande

Institut de recherche en mathématique et physique
Centre de Cosmologie, Physique des Particules et Phénoménologie



C. Degrande

• Electroweak interaction 
• Beta decay and Fermi theory 
• Parity violation 
• Weak algebra and neutral currents 
• Electroweak theory 

• Spontaneous symmetry breaking 
• U(1) 
• SM 
• Fermions masses 

• Effective field theory 
• Introduction 
• Operators and interactions 
• Interference

Plan

Exercices in 
purple by hand 
and in MadGraph

Connection to 
pheno along the 
way



C. Degrande

Questions

• Does the weak interaction explain why they are 
rocky planets? 

• Is the proportionality of the Higgs to fermion 
couplings to their masses due to 

• Parity 

• Gauge invariance 

• Spontaneous symmetry breaking 

• Why are they so many muons produced by CR in 
the atmosphere?
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Questions

• Why is the proton stable and not the neutron? 

• Can I predict the W and z masses from low energy 
data?



Electroweak interaction
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Beta decay

Pauli (1930) : + neutrino
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Beta decay

Pauli (1930) : + neutrino

E and Spin conservation
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Fermi theory (1933)

Current x current

Refused by Nature

ℒF ∝ GFJμ
had × Jlep μ

n destroyed and p, e,  createdν

p̄Γμn ēΓμν

ℒF ∝ GF(ūγμd) × (ēγμν)

Γμ = ?γμ
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Fermi and dimension

S = ∫ d4x ℒ
c = ℏ = 1

[ ] = mass−4

ℒDirac ∋ ψ̄γμ∂μψ, mψ̄ ψ

[ ] = mass4Dimensionless

[ ] = mass3/2

[ψ̄γμψ ψ̄γμψ] = mass6 → [GF] = mass−2
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Unitarity violation

Proba > 1

When?

σFermi ∝ G2
F × s

[ ] = mass−2
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Unitarity violation

4F but in QED

−g2

m2
∼ GF

1
p2 − m2

p2 < < m2

But in QED  
• Always the same fermion 
• Massless gauge boson 

ψ̄γμDμψ

∂μ − iqAμ
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Pion decay

by part
Dirac

, ∂μϕ∂μϕ
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Pion decay

Br

Br

Because V interaction

https://pdg.lbl.gov/
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Inverse beta decay 

Pressure

star collapse

neutron star (fermi pressure)

produce neutrinos

Ex: momentum in CM
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Parity violation 

1956 Lee-Yang

Exp 1957 Wu

or

Averaged value over the events
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Parity

.

Vector

Axial vector or pseudo vector

P-conserving

m,q are scalars
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Parity

Axial vector spin

Spin projector

Helicity projector

Chirality projector
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Parity

Maximal violating interaction (1958)
Feynman Gell-Mann Marshak Sudarshan

Weak interaction with the left only

Max if
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Fermi summary

Requests: pure left

massive Vector boson
changing particle flavour 

All the generations but only the leptons for now
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Weak group
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Weak group 

In QED 

charge replaced by

Do not commute: non abelian

symmetry group close under commutation

Local gauge symmetry
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Neutral currents and right leptons 

changed currents and group neutral currents

.

Not EM

No charged currents with the right fermions

Not invariant under SU(2)

L ∼ 2SU(2)
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Electroweak group

All particles in an SU(2) multiplet have the same charge

.

Non Abelian

Invariant
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Pheno of non abelian gauge theory

since
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Z-A mixing

∂
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FFV

Not interacting, not in the SM
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More electroweak interactions

Q conserved

W±
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Z production
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WW scattering

longitudinal, only if massive 
otherwise transverse only

3 pt only

3 pt and 4 pt

-

Gauge invariance implies massless boson



Electroweak symmetry breaking
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The U(1) case

complex field or not charged

scalar potential
Renormalisable

λ > 0
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Minimum of the potential
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Massive gauge boson

1 gauge boson of mass
1 real scalar field h of mass
1 massless scalar field    mixed with A

Massive vector = 3 d.o.f.=1 scalar + 1 massless vector

Unphysical: removed by gauge transformation 
Only derivative interactions: Goldstone boson(massless) 
transforms linearly with the gauge 
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At high energy

symmetry is restored
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Electroweak symmetry breaking

Broken

1 neutral component a break EM

chosen by gauge
Same potential

i
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Vector bosons masses

Normalization
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Vector bosons masses

Protected by custodial symmetry, only broken by 
gauge and Yukawa interactions

Fermi
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Masses predictions

Very soft 
Compton 
scattering
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More about EWSB

,

3 Goldstone bosons

3 broken generators

3 massive gauge vector bosons eat 3 d.o.f.

Unitary gauge:

At high energy:
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Higgs gauge interactions

Again no
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WW scattering

No unitarity violation at high energy
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Some H production

Associated production

Vector boson fusion



C. Degrande

Some H decay

Depends on the Higgs mass

one off-shell

Golden channel

CMS
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Last free parameter

consistency check

Double or more Higgs production but other diagrams
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Fermion masses

Same as
One field solve 2 problems!

disappear

ULU†
L = U†

LUL = URU†
R = U†

RUR = 1

U†
LylUR = diag(ye, yμ, yτ)
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More about lepton masses

18 parameters but only 3 are physical
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Quark masses

No one for the left-handed but 2

Unitary

3 angles and one phase
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Parameter counting

Mostly from the Yukawa matrices!

3 generations
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Higgs production through top
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Higgs with fermions

Largest but QCD background

Loop induced
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Higgs exercises
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Electroweak precision tests



Effective field theory
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Precision: LEP   vs LHC

10−3 10−2 10−1 100 101

FFV

VVV

ttV

VVH

ttH

bbH

HHH

FFH(2nd)

LEP

LHC

LHC<LEP: QCD perturbative ( ) and non-pert.
(PDF,hadronisation), backgrounds, …

αS

How well do we know the SM?
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Precision era at the LHC

A NEW PRECISION ERA IN PARTICLE PHYSICS
• LHC: discovery → discovery through precision  
• Impressive range of precise cross section measurements 

ATLAS, SM summary plots 1/20
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Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments 

Exp. range NP scale
E

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape
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Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape
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p2 ≪ m2

One assumption : p2 ≪ m2

New/modified interactions 
between SM particles

New particles
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EFT 
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A basis of dimension-eight operators for anomalous neutral

triple gauge boson interactions

Celine Degrande
Department of Physics, University of Illinois at Urbana-Champaign

1110 W. Green Street, Urbana, IL 61801, USA

Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

SM fields & sym.



C. Degrande

EFT 

• Assumption : Eexp <<Λ	

• Model independent (i.e. parametrize a large class of 
models) : any HEAVY NP 

• SM is the leading term : EFT for precision physics 

• higher the exp. precision => smaller EFT error 
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Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

L = LSM +
�

i

Ci

�2
O6

i

a finite number of 
coefficients 

=>Predictive!

Parametrize any NP but an ∞ number of coefficients

SM fields & sym.
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EFT 

• Assumption : Eexp <<Λ	

• Model independent (i.e. parametrize a large class of 
models) : any HEAVY NP 

• SM is the leading term : EFT for precision physics 

• higher the exp. precision => smaller EFT error 

ar
X

iv
:1

3
0

8
.6

3
2

3
v

1
  

[h
ep

-p
h

] 
 2

8
 A

u
g

 2
0

1
3

A basis of dimension-eight operators for anomalous neutral

triple gauge boson interactions

Celine Degrande
Department of Physics, University of Illinois at Urbana-Champaign

1110 W. Green Street, Urbana, IL 61801, USA

Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =
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V )

M2
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{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2
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qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

L = LSM +
�

i

Ci

�2
O6

i

a finite number of 
coefficients 

=>Predictive!

Parametrize any NP but an ∞ number of coefficients

SM fields & sym.

measure only Ci/Λ2
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One hypothesis

LHC exp field

Validity: How far?

.
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0/2F operators

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

New interactions + param/field redefinitions
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4F operators

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Qqqq εαβγεjnεkm

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ

[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.

4
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4F

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Qqqq εαβγεjnεkm

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ

[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.

4
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Pure gaugeX3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

No neutral TGC (ZZA, ZAA)
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High energy tails
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Figure 9: Comparison of the template fits to the observed meµ distributions in the 0-jet (left)
and 1-jet (right) categories. The non-SM contributions for cWWW/L2 = 3.2 TeV�2, cW/L2 =

4.9 TeV�2, and cB/L2 = 15.0 TeV�2 are shown, not stacked on top of the other contributions.
In the plot on the right, the decrease in the non-SM contribution at low meµ is not statistically
significant and results from limited precision in the subtraction of two large yields (SM and
SM+non-SM). The last bin contains all events with reconstructed meµ > 1 TeV. The error bars
on the data points represent the statistical uncertainties for the data, and the hatched areas
represent the total uncertainty for the predicted yield in each bin.

Table 9: Expected and observed 68 and 95% confidence intervals on the measurement of the
Wilson coefficients associated with the three CP-conserving, dimension-6 operators.

Coefficients 68% confidence interval 95% confidence interval
( TeV�2) expected observed expected observed

cWWW/L2 [�1.8, 1.8] [�0.93, 0.99] [�2.7, 2.7] [�1.8, 1.8]
cW/L2 [�3.7, 2.7] [�2.0, 1.3] [�5.3, 4.2] [�3.6, 2.8]
cB/L2 [�9.4, 8.4] [�5.1, 4.3] [�14, 13] [�9.4, 8.5]

to cWWW and cW is similar to the CMS WZ analysis [59] and is much better for cB. Finally,
the sensitivity is slightly weaker than for the CMS analysis of W+W� and WZ production in
lepton and jets events [60]. Figure 10 (right) shows the expected and observed 68 and 95%
confidence level contours for pairs of Wilson coefficients.

13 Summary
Measurements of W+W� boson pair production in proton-proton collisions at

p
s = 13 TeV

was performed. The analysis is based on data collected with the CMS detector at the LHC cor-
responding to an integrated luminosity of 35.9 fb�1. Candidate events were selected that have
two leptons (electrons or muons) with opposite charges. Two analysis methods were described.
The first method imposes a sequence of requirements on kinematic quantities to suppress back-
grounds, while the second uses a pair of random forest classifiers. The total production cross
section is stot

SC = 117.6 ± 1.4 (stat) ± 5.5 (syst) ± 1.9 (theo) ± 3.2 (lumi) pb = 117.6 ± 6.8 pb, where
the individual uncertainties are statistical, experimental systematic, theoretical, and of inte-

2009.00119

Cross-sections 
and precision  
plummet at high 
energy 
EFT/SM is larger at 
H.E. but so are the 
EFT errors
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Higgs operators

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

Potential/self-coupling modification

Field redefinition

Mass redefinition
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Higgs-Fermion

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

break the mass-coupling relation
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More Higgs and gauge

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

Field redefinition or 

Not allowed: A-Z mixing
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Dipoles

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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Higgs, gauge and fermion
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SM nor
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(SM-like) Top decay

C. Zhang, S Willenbrock, PRD83, 034008

J.A. Aguilar-Saavedra, NPB843, 683
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Width, W helicities and …
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interference suppression
2

A4 |h(ASM
4 )| |h(ABSM

4 )|

V V V V 0 4,2

V V �� 0 2

V V   0 2

V   � 0 2

    2,0 2,0

  �� 0 0

���� 0 0

TABLE I: Four-point amplitudes A4 that do not vanish in
the massless limit and the total helicity h(A4) of their SM
and BSM contributions. V = V ±,  =  ± and � denote,
respectively, transversely-polarized vectors, fermions (or
antifermions) and scalars in the SM. For processes with
at least one transversely-polarized vector (listed above the
double line in the table), SM and BSM contributions do
not interfere in the massless limit because have di↵erent
total helicity.

terference term in the amplitude squared. Obviously,
interference is possible only if SM and BSM give non-
vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure
of scattering amplitudes at tree-level, in the SM and
at leading order in the e↵ective field theory expan-
sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
 ↵ and  ̄↵̇, transforming as (1/2, 0) (undotted in-
dices) and (0, 1/2) (dotted indices) representations
of SU(2) ⇥ SU(2) ' SO(3, 1), and Lorentz vectors
Aµ�

µ

↵↵̇
, transforming as (1/2, 1/2). 2 In this lan-

guage, the field strength is written as

Fµ⌫�
µ

↵↵̇
�⌫

��̇
⌘ F↵� ✏̄↵̇�̇ + F̄

↵̇�̇
✏↵� (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

2
We will not distinguish between fermions and anti-fermions

except where explicitly mentioned, as this distinction is not

crucial to our analysis. We will denote a Weyl fermion or

anti-fermion of helicity + (�) with  +
( �

). When indi-

cating a scattering amplitude, the symbol  will stand for

either  +
or  �

.

Am Am0

± ⌥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead

Azatov et al., Helicity Selection Rules and Non-Interference for 
BSM Amplitudes, 1607.05236 
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discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead
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for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
 ↵ and  ̄↵̇, transforming as (1/2, 0) (undotted in-
dices) and (0, 1/2) (dotted indices) representations
of SU(2) ⇥ SU(2) ' SO(3, 1), and Lorentz vectors
Aµ�

µ

↵↵̇
, transforming as (1/2, 1/2). 2 In this lan-

guage, the field strength is written as

Fµ⌫�
µ

↵↵̇
�⌫

��̇
⌘ F↵� ✏̄↵̇�̇ + F̄

↵̇�̇
✏↵� (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

2
We will not distinguish between fermions and anti-fermions

except where explicitly mentioned, as this distinction is not

crucial to our analysis. We will denote a Weyl fermion or

anti-fermion of helicity + (�) with  +
( �

). When indi-

cating a scattering amplitude, the symbol  will stand for

either  +
or  �

.

Am Am0

± ⌥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:
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for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫
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Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:
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(n-point amplitude), and let Am and Am0 be any two
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where all momenta are taken to be outgoing. Then
one has:
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for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫
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propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫
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W ⇢µ) instead

Azatov et al., Helicity Selection Rules and Non-Interference for 
BSM Amplitudes, 1607.05236 

2

A4 |h(ASM
4 )| |h(ABSM

4 )|

V V V V 0 4,2

V V �� 0 2

V V   0 2

V   � 0 2

    2,0 2,0

  �� 0 0

���� 0 0

TABLE I: Four-point amplitudes A4 that do not vanish in
the massless limit and the total helicity h(A4) of their SM
and BSM contributions. V = V ±,  =  ± and � denote,
respectively, transversely-polarized vectors, fermions (or
antifermions) and scalars in the SM. For processes with
at least one transversely-polarized vector (listed above the
double line in the table), SM and BSM contributions do
not interfere in the massless limit because have di↵erent
total helicity.

terference term in the amplitude squared. Obviously,
interference is possible only if SM and BSM give non-
vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure
of scattering amplitudes at tree-level, in the SM and
at leading order in the e↵ective field theory expan-
sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
 ↵ and  ̄↵̇, transforming as (1/2, 0) (undotted in-
dices) and (0, 1/2) (dotted indices) representations
of SU(2) ⇥ SU(2) ' SO(3, 1), and Lorentz vectors
Aµ�

µ

↵↵̇
, transforming as (1/2, 1/2). 2 In this lan-

guage, the field strength is written as

Fµ⌫�
µ

↵↵̇
�⌫

��̇
⌘ F↵� ✏̄↵̇�̇ + F̄

↵̇�̇
✏↵� (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

2
We will not distinguish between fermions and anti-fermions

except where explicitly mentioned, as this distinction is not

crucial to our analysis. We will denote a Weyl fermion or

anti-fermion of helicity + (�) with  +
( �

). When indi-

cating a scattering amplitude, the symbol  will stand for

either  +
or  �

.

Am Am0

± ⌥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:
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For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
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Hadron colliders

LEP LHC
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FeynRules in a nutshell

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version 

! CalcHep / CompHep

! FeynArts / FormCalc

! MadGraph 4

! Sherpa

! Whizard / Omega
© C. Degrande

FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

Input : model.fr

Output : vertices
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Feynman rules outputs

FeynRules 
outputs  can be 
used directly by 

event generators

UFO : output with 
the full information 

used by several 
generators 
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Feynman Rules

FeynRules takes care of all the conventions

cross-check ME and event generation 
Predefined 

basis for most 
ME

Lorentz (Metric/Levi-
Civita tensors, 
Momenta,Dirac 

matrices)

Color 
representationCoupling 

(function of the 
parameters)

igs T
a3
i1i2

�µ3

0

@
ū 1
u 2
g 3

1

A



C. Degrande

• Generic output with the full model information 

• coupling_orders.py, parameters.py, particles.py, 
write_param_card.py, __init__.py, 

• vertices.py, couplings.py, lorentz.py 

• decays.py 

• CT_vertices.py, CT_couplings.py (For NLO) 

• Python module used in MadGraph, Herwig, Gosam, Sherpa

UFO

igsT
a�µ No basis, all the lorentz 

structures of the model
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model file

(***************** This is a template model file for FeynRules ***********) 

(********** Index definition *********) 

IndexRange[ Index[Generation] ] = Range[3] 

IndexFormat[Generation, f] 

(***** Parameter list ******) 

M$Parameters = { 
} 
(***** Gauge group list ******) 

M$GaugeGroups = { 
} 
(***** Particle classes list ******) 

M$ClassesDescription = { 
}

Definition of variables 
in Mathematica syntaxe
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Model information

M$ModelName = "my_new_model";

M$Information = {
Authors -> {"Mr. X", "Ms. Y"},
Institutions -> {"UC Louvain"},
Emails -> {"X@uclouvain.be", "Y@uclouvain.be},
Date -> "01.03.2013",
References -> {"reference 1", "reference 2"},
URLs -> {"http://feynrules.irmp.ucl.ac.be"},
Version -> "1.0"

};

A summary and complete set of options available for M$Information can be
found in Table 1.

The model information will be printed on the screen whenever the model is
loaded into Mathematica. In addition, the contents of M$Information can
be retrieved by issuing the command ModelInformation[] in a Mathemat-
ica session, after the model has been loaded.

2.2 Index Definitions

In general the Lagrangian describing a model is a polynomial in the fields (and
their derivatives) as well as in the parameters of the model. Very often, these
quantities carry indices specifying their members and/or how the di↵erent
quantities transform under symmetry operations. For example, the gauge field
G

a
µ of an unbroken gauge group SU(N) carries two di↵erent types of indices:

- a Lorentz index µ ranging from 0 to 3;
- an adjoint gauge index a ranging from 1 to N

2 � 1.

It is therefore crucial to define at the beginning of each model file the types of
indices that appear in the model, together with the range of values each type
of index may take.

A field  i1i2...(x) carrying indices i1, i2, . . . is represented inside FeynRules
by an expression of the form psi[index1, index2, . . . ]. Each indexi denotes
an object of the form Index[name, i], and represents an index of type name
taking the value i. In this expression name is a symbol and value can be both a
symbol or an integer. In general the name can be chosen freely by the user, but
we emphasize that there are predefined names for the index types describing
four-vectors (Lorentz), four-component spinors (Spin) and two-component
left and right-handed Weyl spinors (Spin1 and Spin2).

9

Good practice for credit, issue(s) tracking
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Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[ Index[Colour] ] = Range[3];
IndexRange[ Index[SU2W] ] = Unfold[ Range[3] ];
IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
{1, . . . , n}. Moreover, the indices of type Lorentz, Spin, Spin1 and Spin2 are
defined internally and do not need to be defined by the user.

At this stage we have to comment on the functions Unfold and NoUnfold used
in the declaration of the indices of type SU2W and Gluon:

(1) The Unfold command instructs FeynRules that if an index of this
type appears contracted inside a monomial, then it should be expanded,
i.e., the monomial with the contracted pair of indices should be replaced
by the explicit sum over the indices. Any index that expands in terms
of non-physical states must be wrapped in Unfold. For instance, the
SU(2)L indices in the Standard Model or in the Minimal Supersymmetric
Standard Model must always be expanded in order to get the Feynman
rules in terms of the physical states of the theory. Otherwise, wrong
results could be obtained when employing matrix element generators.
We refer to Section 4 for more details.

(2) The NoUnfold is ignored by FeynRules. It however plays a role in
FeynArts, and we refer to Section 6.4 or to the FeynArts manual [?]
for more details.

While indices are represented internally inside FeynRules by expressions of
the form Index[name, i], the user does not need to enter indices in this form.
Since it is always possible to reconstruct the type of an index from its position
inside the expression psi[index1, index2, . . . ]. For example, the gluon field
G[mu, a] has been declared as carrying two indices, the first one being of type
Lorentz and the second one of type Gluon (see Section 2.4). FeynRules can
then employ particle class properties to restore the correct notation internally,
as in

G[mu, a] �! G[Index[Lorentz, mu], Index[Gluon, a]] .

In addition, it is possible to specify how the di↵erent types of indices should
be printed on the screen. This is done via the IndexStyle command, e.g.,

11

Tells FR to remplace 
summed indices by 
the explicite sum

Tells FA/FC not to 
remplace summed 

indices by the 
explicite sum

Used in parameters, gauge groups 
and fields
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Indices definition
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then employ particle class properties to restore the correct notation internally,
as in
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In addition, it is possible to specify how the di↵erent types of indices should
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Tells FA/FC not to 
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and fields

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

Format:
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Indices definition
For FeynRules to run properly, the di↵erent types of indices that appear
in the model have to be declared at the beginning of the model file, together
with the range of values they can take. This is achieved like in the following
examples

IndexRange[ Index[Colour] ] = Range[3];
IndexRange[ Index[SU2W] ] = Unfold[ Range[3] ];
IndexRange[ Index[Gluon] ] = NoUnfold[ Range[8] ];

These commands declare three types of indices named Colour, SU2W and Gluon
ranging form 1 to 3 and 1 to 8 respectively. The function Range is an internal
Mathematica command taking an integer n as input and returning the range
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IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
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};
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The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
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into two categories according to whether they carry indices or not. We start
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parameters that do not carry any index. Tensorial parameters, i.e., parameters
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ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

Format:

Predefined indices: Lorentz, Spin, Spin1, Spin2 
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },

Numerical value
Compulsory!
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

MW == {  
    ParameterType -> Internal,  
    Value         -> Sqrt[MZ^2/2+Sqrt[MZ^4/4-Pi/Sqrt[2]*aEW/
Gf*MZ^2]],  
    TeX           -> Subscript[M,W],  
    Description   -> "W mass" 
  },

Expression
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-

12

aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },

For the LHA cards

Dependence in the expansion parameters
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Parameters definition

IndexStyle[ Colour, i ];
IndexStyle[ Gluon, a ];

Issuing these commands at the beginning of a model file instructs FeynRules
to print indices of type Colour and Gluon with symbols starting with the
letters i and a, respectively, followed by an integer number.

A summary of information for the index can be found in Table 2.

2.3 The model parameters

All the model parameters (coupling constants, mixing angles and matrices,
masses, etc.) are implemented as elements of the list M$Parameters,

M$Parameters = {
param1 == { options1 },
param2 == { options2 },

...
};

Each component of this list consists of an equality whose left-hand side is a
label and the right-hand side is a list of Mathematica replacement rules.
The labels (param1 and param2 in the example) are user-defined names to be
used when building the Lagrangian. The sets of replacement rules (options1
and options2 in the example) contain optional information allowing to define
each parameter together with its properties. The model parameters are split
into two categories according to whether they carry indices or not. We start
by reviewing in Section 2.3.1 the implementation of scalar parameters, i.e.,
parameters that do not carry any index. Tensorial parameters, i.e., parameters
carrying one or several indices, are then discussed in Section 2.3.2.

2.3.1 Scalar parameters

To illustrate the implementation of scalar parameters, we focus on the exam-
ple of the strong coupling constant. The declaration of any other parameter is
similar. Although the strong coupling constant gs usually appears in the La-
grangian, it is in general more convenient to use the quantity ↵s = g

2
s/4⇡ as an

input parameter, since its numerical value (e.g., at the electroweak scale) has
been precisely determined from experiments. It is therefore desirable to have
both parameters in the FeynRules model file. This motivates us to choose,
in our example, ↵s as a free parameter of the model, i.e., as an external param-
eter (in FeynRules parlance) or equivalently as an independent parameter.
In contrast, gs is an internal parameter, or in other words, a parameter de-
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aEWM1 == {  
    ParameterType    -> External,  
    BlockName        -> SMINPUTS,  
    OrderBlock       -> 1,  
    Value            -> 127.9, 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z 
pole" 
  },

For the LHA cards

Dependence in the expansion parameters
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Interaction order

aEWM1 == { … 
    InteractionOrder -> {QED,-2}, 
    Description      -> "Inverse of the EW coupling constant at the Z pole" 
  },

In the SM :
QED
QCD the power of 

the power of 
gs

e

vev == {… 
    InteractionOrder -> {QED,-1}, 
    Description      -> "Higgs vacuum expectation value" 
  },
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Interaction order

aEWM1 == { … 
    InteractionOrder -> {QED,-2}, 
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Interaction order

yu == {… 
    InteractionOrder -> {QED, 1}, 
    Description      -> "Up-type Yukawa couplings" 
  },

In the SM :
QED
QCD the power of 

the power of 
gs

e

vev == {… 
    InteractionOrder -> {QED,-1}, 
    Description      -> "Higgs vacuum expectation value" 
  },

Such that masses have QED=0

However      is not a small parameter!yt
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Interaction order

M$InteractionOrderHierarchy = {  {QCD, 1}, 
                                                                  {QED, 2}};

gs ⇠ e2
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Interaction order

M$InteractionOrderHierarchy = {  {QCD, 1}, 
                                                                  {QED, 2}};

gs ⇠ e2

NP the power of ⇤�2

L = L+
X

i

1

⇤2
Oi +O
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,{NP, 2}
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Interaction order

M$InteractionOrderHierarchy = {  {QCD, 1}, 
                                                                  {QED, 2}};

gs ⇠ e2

NP the power of ⇤�2

L = L+
X

i
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⇤2
Oi +O

�
⇤�4

�

,{NP, 2}

M$InteractionOrderLimit = {{NP,1}};

Max power per diagram of         is 1⇤�2
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Fields definition I

to their symbol,

M$ClassesDescription = {
spin1[1] == { options1 },
spin1[2] == { options2 },
spin2[1] == { options3 },
...}

The symbols spin1, spin2, etc., refer each to one of the field type supported
by FeynRules 2 :

- S: scalar fields;
- F: Dirac and Majorana spinor fields;
- W: Weyl fermions (both left- and right-handed);
- V: vector fields;
- R: four-component Rarita-Schwinger fields (spin-3/2 fields);
- RW: two-component Rarita-Schwinger fields (both left- and right-handed
spin-3/2 fields);

- T: spin-2 fields;
- U: ghost fields (only complex ghosts are supported).

Similar to the declaration of the parameter classes, the quantities options1,
options2, options3, etc., are sets of replacement rules defining field proper-
ties. Following the spirit of the original FeynArts model file format, each
particle class should be thought of as a ‘multiplet’ consisting of particles that
carry the same quantum numbers but might di↵er in mass. This implies that
all fields belonging to the same class necessarily carry the same indices. The
main advantage of collecting particles with the same indices into classes is
that it allows the user to write compact expressions for Lagrangians. This is
illustrated in the example Lagrangian

L = q̄f i/@qf + gsq̄f�
µ
TaqfG

a
µ , (2.4)

where qf denotes the “quark class”, gs the strong coupling constant, Ta the
fundamental representation matrices of SU(3) and Gµ stands for the gluon
field. The notation of Eq. (2.4) avoids having to write out explicitly a La-
grangian term for each quark flavor.

Just like for the parameter classes, each particle class can be given a number
of options which specify the properties of the field. In particular, there are two
mandatory options that have to be defined for every field:

(1) Each particle class must be given a name, specified by the ClassName

2 The classes R, W and RW are specific to FeynRules and not supported by Fey-
nArts.
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ClassName->…, SelfConjugate->…, 
Indices->…,QuantumNumbers->…, 
FlavorIndex->…, ClassMembers, 

Mass->…, Witdh->…, PDG->…, 
Definitions->…, Unphysical->…, 

Chirality->…, MajoranaPhase->…, 
WeylComponents->…, 

Goldstone->…, Ghost->…, …(Format)
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Spin index
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Generation index distinguishes 
the class members
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Same representation
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

External parameters
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

External parameters

Generic label

and do not need to be specified. In addition to indices labeling how a field
transforms under symmetries, each field may have additional indices such as
flavor indices. One of these can be distinguished as the flavor index of the class
and labels its members. It is declared in the model file via the FlavorIndex op-
tion. For example, the up-type quark class uq previously introduced is usually
defined carrying two indices supplementing the spin index (automatically han-
dled by FeynRules), one of type Colour ranging from 1 to 3 and specifying
the color of the quark, and another index of type Flavour ranging from 1 to
3. The latter is specified as the flavor index of the class (via the FlavourIndex
option) so that it labels the members of the class,

Indices -> { Index[ Colour ], Index[ Flavour ] },
FlavorIndex -> Flavour

Quantum fields are not always only characterized by the tensor indices they
carry, but also by their charges under the discrete and / or abelian groups of
the model. FeynRules allows the user to define an arbitrary number of U(1)
charges carried by a field, as, e.g., in

QuantumNumbers -> {Q -> -1, LeptonNumber -> 1}
QuantumNumbers -> {Q -> 2/3}

Next, the user can specify the symbol and the numerical value for the masses
and the decay widths of the di↵erent members of a particle class using the
Mass and Width options 3 . The argument of Mass is a list with masses for each
of the class members, as in

Mass -> {MW}
Mass -> {MU, MC, MT}
Mass -> {Mu, MU, MC, MT}

where in the last example, the symbol Mu is given for the entire class, while
the symbols MU, MC and MT are given to the members. The symbol for the
generic mass (Mu in this case) is by default a tensorial parameter carrying a
single index corresponding to the FlavorIndex of the class. In addition, the
AllowSummation property is internally set to True. The user can not only
specify the symbols used for the masses but also their numerical value as in

Mass -> {MW, Internal}
Mass -> {MZ, 91.188}
Mass -> {{MU,0}, {MC,0}, {MT, 174.3}}
Mass -> {Mu, {MU, 0}, {MC, 0}, {MT, 174.3}}

3 In the following we only discuss the masses of the particles. Widths however work
in exactly the same way.
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Fields definition II

F[3] == {    ClassName        -> uq, 
    ClassMembers     -> {u, c, t}, 
    Indices          -> {Index[Generation], Index[Colour]}, 
    FlavorIndex      -> Generation, 
    SelfConjugate    -> False, 
    Mass             -> {Mu, {MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, 
    Width            -> {0, 0, {WT,1.50833649}}, 
    QuantumNumbers   -> {Q -> 2/3}, 
    PDG              -> {2, 4, 6},   
    … 
  }

Not used in FR but by 
following codes
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Fields definition III

V[12] == {  
    ClassName     -> Wi, 
    Unphysical    -> True, 
    SelfConjugate -> True,  
    Indices       -> {Index[SU2W]}, 
    FlavorIndex   -> SU2W, 
    Definitions   -> { Wi[mu_,1] -> (Wbar[mu]+W[mu])/Sqrt[2], 
Wi[mu_,2] -> (Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3] -> cw 
Z[mu] + sw A[mu]} 
  }

FR does not export 
them to matrix 
element code

Physical fields

Interaction eigenstates
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Fields definition IV

U[11] == { 
    ClassName     -> ghB,  
    Unphysical    -> True, 
    SelfConjugate -> False, 
    Ghost         -> B,  
    Definitions   -> { ghB -> -sw ghZ + cw ghA} 
  },

S[2] == { 
    ClassName       -> G0, 
    SelfConjugate   -> True, 
    Goldstone       -> Z, 
    … 
  },

ClassName of the 
boson
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Gauge Groups

M$GaugeGroups = { 
  U1Y  == {  
    Abelian          -> True,   
    CouplingConstant -> g1,  
    GaugeBoson       -> B,  
    Charge           -> Y 
  },… 
  SU3C == {  
    Abelian           -> False,  
    CouplingConstant  -> gs,  
    GaugeBoson        -> G, 
    StructureConstant -> f,  
    Representations   -> {T,Colour},  
    SymmetricTensor   -> dSUN 
  }  
};
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Gauge Groups

M$GaugeGroups = { 
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}; Generator label

Associated index
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Gauge groups

Table 10: Gauge group options (continued)

Representations Refers to a list of two-component lists
containing all the representations de-
fined for this gauge group. The first
component of these lists consists of the
symbol by which the generators of the
representation are denoted, while the
second component is the name of the
index it acts on.

Definitions Contains a list of replacement rules
that should be applied by FeynRules
before calculating vertices, expressing
representation matrices and/or struc-
ture constants in terms of the model
parameters and Mathematica stan-
dard objects.

Table 11

The list of all the options described above is summarized in Table 10.

2.6.2 FeynRules functions related to gauge groups

The declaration of a gauge group enables FeynRules to automatically con-
struct field strength tensors, superfield strength tensors and covariant deriva-
tives associated with this group, so that they can be further used when building
Lagrangians. In the case of abelian gauge groups, the field strength tensor is
invoked by issuing

FS[A, mu, nu]

where A is the corresponding gauge boson and mu and nu denote Lorentz
indices. Its supersymmetric counterparts can be called by the command

SuperfieldStrengthL[ V, sp ]
SuperfieldStrengthR[ V, spdot ]

respectively. In these commands, V stands for the vector superfield associated
with the gauge group and sp and spdot are left-handed and right-handed spin
indices. These three functions can be easily generalized to the non-abelian case,

FS[ A, mu, nu, a ]
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SuperfieldStrengthL[ V, sp , a ]
SuperfieldStrengthR[ V, spdot, a ]

where a stands for an adjoint gauge index. Following the FeynRules con-
ventions, these quantities are defined as

F
a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ + gf

a
bcA

b
µA

c
⌫ ,

W↵ = � 1

4
D̄·D̄e

2gV
D↵e

�2gV
,

W ↵̇ = � 1

4
D·De

�2gV
D̄↵̇e

2gV
,

(2.7)

where g and f denote the coupling constant and the structure constants of
the gauge group and D and D̄ are the superderivatives defined below, in
Section 4.5. The abelian limit is trivially derived from these expressions. We
emphasize that the spinorial superfields W↵ and W ↵̇ are not hard-coded in
FeynRules and are recalculated each time. However, they are evaluated only
when an expansion in terms of the component fields of the vector superfield V
is performed.

From the information provided at the time of the declaration of the gauge
group, FeynRules can also define, in an automated way, gauge covariant
derivatives. These can be accessed through the symbol DC[phi, mu], where
phi is the field that it acts on and mu the Lorentz index. In our conventions,
the covariant derivative reads

Dµ� = @µ�� igA
a
µTa� (2.8)

where Ta stands for the representation matrices associated to the represen-
tation of the gauge group in which the field � lies. The sign convention in
Eq. (2.8) is consistent with the sign convention in Eq. (2.7).

All the functions presented in this section are summarized in Table 12.

2.7 Model restrictions

In phenomenological studies, it can sometimes be useful to consider restricted
models which are obtained from a parent model by putting some of the ex-
ternal parameters to zero. As an example, one might be interested in the
Standard Model with a diagonal CKM matrix. While it is of course always
possible to make the CKM matrix numerically diagonal, it is desirable to re-
move the interaction terms proportional to the o↵-diagonal terms altogether
in order to avoid a proliferation of vanishing diagrams in Feynman diagram
calculations. This can be achieved by the use of the so-called restriction files
in FeynRules. Restriction files are text files (with the extension .rst) that
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DC[phi, mu]
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Lagrangian

{{a11, a12} , {a21, a22}}] , {u, d}].

As already discussed in Section 2.6, gauge invariant derivatives can be con-
veniently defined via the functions DC[phi,mu] and FS[G, mu, nu, a]. The
first argument of both functions is the relevant field, mu and nu are Lorentz
indices and a represents an index of the adjoint representation of the associ-
ated gauge group. The gauge fields and generators that appear in covariant
derivatives of a particular field are fixed by its indices and by the definition of
the gauge group. For example, the QCD Lagrangian for massless down quarks,

LQCD ⌘ �1

4
G

µ⌫
a G

a
µ⌫ + id̄ /Dd, (3.16)

is written as

L = -1/4 FS[G, mu, nu, a] FS[G, mu, nu, a]
+ I dqbar.Ga[mu].DC[dq, mu]

All the predefined FeynRules functions useful for the building of the La-
grangian are given in Table 14.

Finally, it is often convenient to write a Lagrangian in terms of two-component
fermions and to let FeynRules perform the transformations to four-component
fermions. We note that this operation is mandatory for most Feynman diagram
calculators, which in general only work with four-component spinors. More
precisely, if � and ⇠̄ are left and right-handed Weyl spinors, and  = (�, ⇠̄)T

is a Dirac fermion, we can easily switch to four-component fermions by using
the replacements
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(3.17)

These transformation rules are implemented in FeynRules via the WeylTo-
Dirac function, which takes as an argument a Lagrangian written in terms of
two-component fermions, and returns the same Lagrangian in terms of four-
component fermions.

3.1 Tools for Lagrangians

FeynRules provides functions, collected in Table 15, that can be used while
constructing Lagrangians. For example, the function ExpandIndices[] re-
turns the Lagrangian with all the indices written explicitly. Each of the other
functions return a di↵erent part of the Lagrangian as described in the table.
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definition through the Indices option, given in the same order. The di↵erent
flavors can also be accessed using the names given in ClassMembers. They have
the same indices as the full flavor multiplet, with the flavor index omitted. We
recall that, if a field is not self-conjugate, FeynRules automatically creates
the symbol for the conjugate field by adding ‘bar’ at the end of the particle
name, i.e., the antiparticle associated to psi is denoted by psibar. For a
fermion  , the conjugate field is  ̄ ⌘  

†
�
0. Alternatively, the conjugate field

can be obtained by issuing anti[psi].

Fields (and their derivatives) can be combined into polynomials. By conven-
tion, all the indices appearing inside a monomial in FeynRules must be
contracted, i.e., all indices must appear pairwise 6 . Furthermore, all indices
must be spelled out explicitly. For anticommuting fields (fermions and ghosts),
the Mathematica Dot function has to be used, in order to keep the relative
order among them fixed. For example, the interaction between the gluon and
all the down quarks can be written as

gs Ga[mu, s, r] T[a, i, j] dqbar[s, f, i].dq[r, f, j] G[mu, a]

There is however one case where indices do not need to be spelled out com-
pletely but can be omitted. If in a fermion bilinear, all the indices of the
rightmost fermion are connected to all the indices of the leftmost fermion
(perhaps with intermediate matrices), then these indices can be suppressed
and FeynRules takes care of restoring them internally, such as in

dqbar.Ga[mu].T[a].dq
! Ga[mu,s,r] T[a,i,j] dqbar[s,f,i].dq[r,f,j] .

In case of doubt, the user should always spell out all indices explicitly.

The Dot product is mandatory for anticommuting fields or parameters. It
should be noted that Mathematica does not keep the Dot product between
the components of vectors or matrices after computing their product explicitly

{ubar, dbar}.{u, d} = u ubar + d dbar

The appropriate treatment requires, therefore, use of the Inner function for
each Dot, e.g.

Inner[Dot, {ubar, dbar}, {u, d}] = ubar.u + dbar.d

or for more than one multiplication,

Inner[Dot, Inner[Dot, {ubar, dbar} ,

6 With the exception of single-index parameters for which the AllowSummation

option is set to True (see Section 2.3).
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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Loading Feynrules

Loading the model

Checking the Lagrangian
CheckKineticTermNormalisation[ L ] 
CheckMassSpectrum[ L ]

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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All the model files should 
be loaded at once

4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.

52

Extracting the Feynman rules

WriteUFO[ L ]

Outputting the Lagrangian



C. Degrande

8
<

:

0

@
A 1
GP 2
GP† 3

1

A , ie (pµ1
2 � pµ1

3 )

9
=

;

n o

…

All momenta are incoming

h0| iLI |fieldsi

Running FeynRules

Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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Table 17: Constructing supersymmetric Lagrangians.

CSFKineticTerms[csf] Derives kinetic and gauge interaction
terms associated with the chiral super-
field csf. If called without any argu-
ment, a sum over the whole chiral con-
tent of the theory is performed.

VSFKineticTerms[vsf] Derives kinetic and gauge interaction
terms associated with the vector super-
field vsf. If called without any argu-
ment, a sum over the whole gauge con-
tent of the theory is performed.

SolveEqMotionFD[ L ] Computes and solves the equations of
motion for all auxiliary fields. The so-
lutions are then inserted in the La-
grangian L.

SolveEqMotionD[ L ] Computes and solves the equations of
motion for the auxiliary D-fields. The
solutions are then inserted in the La-
grangian L.

SolveEqMotionF[ L ] Computes and solves the equations of
motion for the auxiliary F -fields. The
solutions are then inserted in the La-
grangian L.

WeylToDirac[ L ] Reexpresses a Lagrangian L, contain-
ing two-component Weyl fermions, in
terms of four-component fermions.

Table 17

of the Mathematica notebook 8 . In order to load FeynRules, the user
must first specify the directory where it is stored and then load it by issuing
$FeynRulesPath = SetDirectory[ <the address of the package> ];
<< FeynRules`

8 In other words, if the model description is done in a Mathematica notebook, it
should come after FeynRules is loaded.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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4.2 Loading the model file

After the FeynRules package has been loaded 9 , the model can be loaded
using the command LoadModel,

LoadModel[ < file.fr >, < file2.fr >, ... ]

The model may be contained in one model file or split among several files. For
FeynRules to run properly, the extension of each model file should be .fr.
If the model description is entered directly in the Mathematica notebook,
the list of files is then empty. In this case, LoadModel[] has to be executed
after all the lines of the model description are loaded into the kernel.

Any time the model description changes, the model must be reloaded. Cur-
rently, this means that the Mathematica kernel must be quit and the Feyn-
Rules package and model must be reloaded from the beginning. An exception
to this is the Lagrangian. It can be changed and extended without having to
reload the model information.

In the rest of this section, we describe the main utilities included in Feyn-
Rules which are summarized in Table 18.

4.3 Extracting the Feynman rules

After the model is loaded and the Lagrangian is defined, the Feynman rules can
be extracted using the command FeynmanRules. For the rest of this section,
we use the QCD Lagrangian defined in Eq. (3.16) as an example. The Feynman
rules can be generated by means of the command 10 :

vertsQCD = FeynmanRules[ LQCD ];

The vertices derived by FeynRules are then written out on the screen and
stored internally in the variable vertsQCD. The function FeynmanRules has
several options, that are described below.

The user can instruct Mathematica to not write the Feynman rules to the
screen with the option ScreenOutput set to False,

9 The user may want to change the current directory of Mathematica at this
point. Otherwise, all the files and directories generated by FeynRules may end up
in the main FeynRules directory.
10 Since the vertices list may be very long, it is usually desirable to end this statement
with a semicolon.
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CheckHermiticity[ L, options ] 

CheckDiagonalKineticTerms[ L, options ] 

CheckDiagonalMassTerms[ L, options ] 

CheckDiagonalQuadraticTerms[ L, options ] 

CheckKineticTermNormalisation[ L, options ] 

CheckMassSpectrum[ L, options ]

+

Table 15: Manipulating a Lagrangian

All the functions below share the same options as FeynmanRules,

which can be found in Table 19.

ExpandIndices[L, options] Restores all the suppressed in-
dices in the Lagrangian L.

GetKineticTerms[L, options] Returns the kinetic terms in
the Lagrangian L.

GetMassTerms[L, options] Returns the mass terms in the
Lagrangian L.

GetQuadraticTerms[L, options] Returns the quadratic terms
in the Lagrangian L.

GetInteractionTerms[L, options] Returns the interaction terms
in the Lagrangian L.

SelectFieldContent[L, list] Returns the part of the La-
grangian L corresponding to
the field content specified in
list.

Table 15

Once the Lagrangian is implemented, several sanity checks can be performed
by means of the functions presented in Table 16. First, the function

CheckHermiticity[ L ];

checks if the Lagrangian L is Hermitian. Next, three functions are available to
check if the kinetic terms and the mass terms are diagonal, CheckDiagonalKi-
neticTerms, CheckDiagonalMassTerms and CheckDiagonalQuadraticTerms.
Finally, two functions, CheckKineticTermNormalisation and CheckMass-
Spectrum, allow to check the normalization of the kinetic terms and compare
the masses computed from the Lagrangian to those of the model description.
The FeynRules conventions on the normalization of the kinetic and mass
terms for the scalar, spin 1/2 and vector fields are
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(2) Spin-1/2 fermions:
- Majorana:

1
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�̄i/@�� 1

2
m�̄�,

- Dirac:
 ̄i/@ �m ̄ ,
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2
m

2
AµA

µ
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- Complex:

� 1

2
F

†
µ⌫F

µ⌫ �m
2
A

†
µA

µ
.

FeynRules does not use the quadratic pieces of a Lagrangian. However,
the propagators hard-coded either in FeynRules or in the event generators
assume that the quadratic piece of the Lagrangian follow the above-mentioned
conventions. Furthermore, since the kinetic and mass terms for spin-3/2 and
spin-2 fields are model dependent, they are therefore not implemented. Finally,
checks on Weyl fermion kinetic and mass terms are also not supported since
there exist several ways to write them down.

3.2 Automatic generation of supersymmetric Lagrangians

The implementation of supersymmetric Lagrangians in FeynRules can be
highly facilitated by means of a series of dedicated built-in functions. The
Lagrangian describing the kinetic terms and the gauge interactions of the
chiral content of any supersymmetric theory is given by

Lchiral =
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i e
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i
⌘

+ i

p
2gj�̄

ja ·  ̄iTa�
i � i

p
2gj�

†
iTa 

i · �ja � gjD
ja
�
†
iTa�

i
,

(3.18)

where the superfield content of the theory is represented by a set of chiral
superfields {�i = (�i

, 
i
, F

i)} and vector superfields {V j = (vj,�j, Dj)}. In
the first line of the equation above, the [ . ]✓·✓✓̄·✓̄ indicates that one has to extract
the highest-order coe�cient in ✓ and ✓̄ from the expansion of the superfield
expression included in the brackets. We recall that the covariant derivatives are
defined in Eq. (2.8) and that the matrices Ta stand for representation matrices
of the gauge group relevant to the fields they act on. This Lagrangian can be
computed in FeynRules by issuing

Theta2Thetabar2Component[ CSFKineticTerms[ ] ]
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C. Degrande

Toolbox

ExpandIndices[L, options] 

GetKineticTerms[L, options]  

GetMassTerms[L, options]  

GetQuadraticTerms[L, options]  

GetInteractionTerms[L, options]  

SelectFieldContent[L, list] 


