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Monte-Carlo Physics

(Our goal
* Cross-section

- Differential cross-section
- Un-weighted events
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Simulation of collider events

Simulation of collider events




What are the MC for”/
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What are the MC for”/
(Soales |

cales |. High-Q" Scattering 2. Parton Shower
TeV = where BSM physics lies
;.v‘,’ .........
e i
GeV
s process dependent
= first principles description
¥ it can be systematically improved

{ MeV o :
U 3. Hadronization 4. Underlying Event




What are the MC for”/
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& universal/ process independent
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What are the MC for”/
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What are the MC for”/

p |. High-Q Scattering 2. Parton Shower

cales

TeV
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&= energy and process dependent

&= model-based description

GeV
0 O T ‘ -
N I Q-
N =~ V 48 "
¢, .0 o O
MeV o Nee ® g
N/ 3. Hadronization STty 4. Underlying Event




What are the MC for”/
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Question time

° Allez sur wooclap.com Code d'événemen t
@ Entrez le codt'e Q'événement dans le MADG RAP
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To Remember

-~

» Multi-scale problem
= New physics visible only at High scale
= Problem split in different scale
O Factorisation theorem




MASTER FORMULA FOR THE LHC

.TlE ZBQE

Gab—x (S, LF, UR)

Parton-level cross
section



MASTER FORMULA FOR THE LHC

fa(xlv IUF)fb(x% ,UF) &ab—>X(§a HE, ,UR)

Parton density Parton-level cross
functions section




MASTER FORMULA FOR THE LHC

Z /d$1d$2dq)FS folz1, pr) folze, ur) Gap—x (S, ur, LR)

a,b

Phase-space Parton density Parton-level cross
integral functions section




Parton densities
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At small x (small S), gluon domination.
At large x valence quarks
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Hadron colligers

zb: dri1dzedPrs fo(x1, ur) fo(xe, pr) Gap—x (S, wr, UR)

proton - (anti)proton cross sections
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Hadron colligers

zb: dri1dzedPrs fo(x1, ur) fo(xe, pr) Gap—x (S, wr, UR)

proton - (anti)proton cross sections
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Hadron colligers

zb: dri1dzedPrs fo(x1, ur) fo(xe, pr) Gap—x (S, wr, UR)

proton - (anti)proton cross sections
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Hadron colligers

zb: dri1dzedPrs fo(x1, ur) fo(xe, pr) Gap—x (S, wr, UR)

proton - (anti)proton cross sections
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FPerturpative expansion

dGap—x (8, up, ur) Parton-level cross section

The parton-level cross section can be computed as a
series in perturbation theory, using the coupling
constant as an expansion parameter, schematically:

~ __ _Born | (1) ( ) (2) ( ) (3)
1+
7 ( 27T " 2T " 2T o >




FPerturpative expansion

dGap—x (8, up, ur) Parton-level cross section

The parton-level cross section can be computed as a
series in perturbation theory, using the coupling
constant as an expansion parameter, schematically:
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FPerturpative expansion

dbap—x (S, HF, UR)

Parton-level cross section

» The parton-level cross section can be computed as a
series in perturbation theory, using the coupling
constant as an expansion parameter, schematically:

5 _ sBorn () ( ) (2) ( ) (3)
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* Including higher corrections improves predictions

and reduces theoretical uncertainties



Improved predictions
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* Leading Order predictions can
depend strongly on the
renormalization and factorization
scales

* Including higher order corrections
reduces the dependence on these
Scales %o %0 100 v 200 T ew 100
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ﬁ_O computation (top quark pair) \

normalized to
one

Vs
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ﬁ_O computation (top quark pair) \
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ﬁ_O computation (top quark pair) \
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ﬁ_O computation (top quark pair) \

normalized to
one
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ﬁ_O computation (top quark pair) \
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- Large scale uncertainty
- but mainly in the Normalisation

\ - LO is good for shape /
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To Remember

4 A

E; /dﬂ?ld@dq’FS folzy, pr) fo(xe, pr) Gap—x (S, Ur, UR)

Phase-space Parton density Parton-level cross
integral functions section

- PDF: content of the proton

= Define the physics/processes that will
dominate on your accelerator

- LO: good for shape
- NLO/NNLO: Reduce scale uncertainty

- Computation are inclusive (+ any jet) due
to renormalization/factorization scale

- /




Matrix-Element

/“Calculate a given process (e.g. gluino pair) N\
» Determine the production mechanism

\SN\%

'l
/S/MM
1 3

diagram 1 D=2, QED am 2 QCD=2, QED=0

« Evaluate the matrix-element

‘M |2 =Need Feynman Rules!

» Phase-Space Integration
_ 1 2
- — 28/\/\/1\ 40 (n)

\_ /




Matrix-Element

/“Calculate a given process (e.g. gluino pair) N\
» Determine the production mechanism
Easy
sl <
//M <1l.enough
- Evaluate the matrix-element (@ Hard
\M|2 =Need Feynman Rules!
- Phase-Space Integration - ?ﬁ%
1 .
o= / \/\/I\Zd(ﬁ(n) (in general)
N 25 /




Matrix-Element

/“Calculate a given process (e.g. gluino pair) N\
- Determine the production mechanism

\%M

Easy

sl <

//N\ <1'.enough
- Evaluate the matrix-element Y@ Hard

|/\/l|2 =Need Feynman Rules!
, ) V
|+ Phase-Space Integration - Hjl?é
(in general)

T [
o= 5o [ IMPdD@m)

\_

@Now




Matrix-Element

/“Calculate a given process (e.g. gluino pair) N\
- Determine the production mechanism

\KM
'l
/S/M
1 3
2 ED=0

<tr. Easy
enough

\_

Hard
\./\/1\2 =Need Feynman Rules! Tommorow

|« Phase-Space Integration - mi?c"
o %S/‘M‘qu)(n) (in general)

@Now




Monte Carlo Integration




Monte Carlo Integration

Calculations of cross section or decay widths involve A
integrations over high-dimension phase space of very
peaked functions:
- [ IMPaom)
o= — n
25
/




Monte Carlo Integration

Calculations of cross section or decay widths involve A
integrations over high-dimension phase space of very
peaked functions:
Dim|®(n)| ~ 3n
, /W‘qu)( ), P(n)]
o= — n
25
/




Monte Carlo Integration

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

» Dim|®(n)| ~ 3n
1 2
o= 2—8/|./\/l\ dP(n)

General and flexible method is needed




Monte Carlo Integration

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

Dim|®(n)] ~ 3n

| , "4
;= Q—S/w\ 4 (n)

General and flexible method is needed

Not only integrating but also generates events



Integration
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tegration

1 T
dx cos —x
0 2

PE)A
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/dazC

) 1/

® MonteCarlo

® Trapezium

9 ® Simpson

"Method of evaluation )
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Integration

1 )
TT dq?
/0 dx cos 52 /(QZ_MQJFZ.MF)Q /dxC

P(E)4
[

_simpson  MC Method of evaluation A
________________ S . 063803 ® MonteCarlo 1/ v N
________________ 5 0’63670’8 ® Trapezium /N2
______________ 20 0’636620’6 \ ® Simpson :_/N4 j

1000 | 0,636619 0,636
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Integration

1
I:/ da?cosix /
0 2 (

PE)A
[

dq?

q*> — M? +iMT)?

~N
/dazC

\ —— N 0 1/
Method of evaluation A
® MonteCarlo 1 / vV N More Dimension -
® Trapezium 1/N2 # 1/N2/d
_ ® Simpson ’ 1/N4/d y




Monte-Carlo
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Integration

1 )
TT dq?
1 :/O dx cos 533 /(q2—M2+iMF)2 /dmC




Integration
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dx cos §x

[

dq? A
> — M2 + iMT)? / dz C




Integration
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dx cos §x

[

dq? A
> — M2 + iMT)? / dz C




Integration

1 )
TT dq?
1 :/O dx cos 533 /(q2—M2+iMF)2 /dmC




Importance Sampling

Iy = 0.637 £ 0.307/V/N
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Importance Sampling
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Importance Sampling
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Importance Sampling
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Importance Sampling
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Importance Sampling
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Importance Sampling

2 N . I, )
03 08
06! 06
04 # 04
02 2 \
""" 1 I K VI TR VR TR TR TR TR TR TR
I = / dx cos Ifz; [ 2 €08 (5T) &y .08 Ex[€]
: : 1_/0 a1t =) oty = [ T e,
=) ~ |
Iy =0.6374+0.307/V'N In = 0.637£0.031/VN

\_ L

\
The Phase-Space parametrization is important to have an

efficient computation!
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Importance Sampling

/ A A
(¢ — M? +iMT)?
2 2
B q- — M
f—arctan( i )
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Importance Sampling

ﬁf)z:
/ dq? ' )
(q2 — M? —I—iMF)2
2 g2
& = arctan (q M )
I' M
/




Why importance”

P(E)A
Prae T

-I'72 ‘ M 'F/Z

E

/Why Importance Sampling? A
We probe more often the region where
the function is high!
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Why importance”

P(E)A
Prax T

-’ /2’ M ’F/Z

/Why Importance Sampling? A

We probe more often the region where
the function is high!
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Why importance”

P(E)A
Prae T

-’ /2’ M ’F/Z

/Why Importance Sampling? A

We probe more often the region where
the function is high!

\_ /
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lmportance Sampling

/Kev Point h

 Generate the random point in a distribution
which is close to the function to integrate.

» This is a change of variable, such that the
function is flatter in this new variable.

*Needs to know an approximate function.

_ y,
( Adaptative Monte-Carlo )
- Create an approximation of the function on
L the flight! ,




VEGAS

( Adaptative Monte-Carlo A
 Create an approximation of the function on
iaht!
L the flight! )
( Algorithm
T 1. Creates bin such that
1 TN each of them have the
\ same contribution.
=Many bins where the

function is large

2. Use the approximate
for the importance
sampling method.

\_




VEGAS

More than one Dimension

- VEGAS works only with 1(few) dimension

S =memory problem




VEGAS

More than one Dimension h

- VEGAS works only with 1(few) dimension

S =memory problem

AN

/Solution
- Use projection on the axis

P(X)= p(X)*P(y)*p(2)- .-




VEGAS

More than one Dimension h

- VEGAS works only with 1(few) dimension

S =memory problem

AN

/Solution
- Use projection on the axis

P(X)= p(X)*P(y)*p(2)- .-

AY 4




VEGAS

More than one Dimension N
- VEGAS works only with 1(few) dimension
S =memory problem y
/Solution A
- Use projection on the axis
X)— X)® °D(Z)...
_ P(x)= p(x)*p(y)*P(2) ,
- N
« We need to
ensure the

factorization !

= Additional
change of

variable

v




Multi-channel

What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes?
Vegas is bound to fail!




Multi-channel

What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes?
Vegas is bound to fail!

Solution: use different transformations = channels
n n
p(x) = aipi(z)  with > =1
i=1 i=1
with each pi(x) taking care of one “peak” at the time



Multi-channel




Example: QCD 2 = 2

Three very different pole structures contributing
to the same matrix element.



Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

S| M;|? 5 | M |2 5
M2 = / AT VANER Mo
/ Zj Mj‘z Z Zj ‘Mj‘Q




Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

AL A
[l = [ S5 e = 5 [ e
J ) J

— Any single diagram is “easy” to integrate (pole =~ 1
structures/suitable integration variables known
from the propagators)

— Divide integration into pieces, based on diagrams

— All other peaks taken care of by denominator sum




Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

AL A
[l = [ S5 e = 5 [ e
J ) J

— Any single diagram is “easy” to integrate (pole =~ 1
structures/suitable integration variables known
from the propagators)

— Divide integration into pieces, based on diagrams

— All other peaks taken care of by denominator sum

N Integral N

— Errors add in quadrature SO no extra cost

— “Weight” functions already calculated during [#/1? calculation

\ — Parallel in nature /




|2
M 2 Zz MZ ‘ M. 2 M 2
J J i i J
4 Pl gg wpwm )
s=725.73 £ 2.07 (pb)
Graph|Cross-Section |[{Error|Events (K)| Unwgt [Luminosity term of the above sum.
G2.2 377.6] 1.67| 142.285| 7941.0 21
G3 239] 1.16 220.04{10856.0 45.5 each term might not be
Gl 109.110.378 70.88] 3793.0 34.8 gauge invariant
P1 wpwm
s=20.714 £+ 0.332 (pb)
Graph|Cross-Section ||Error|Events (K)|Unwgt|Luminosity
Gl.2 20.7110.332 7.01| 3730 18
J
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To Remember

"+ Phase-Space integration is difficult N

\_

We need to know the function
= Be careful with cuts

MadGraph split the integral in different
contribution linked to the Feynman Diagram

=Those are not the contribution of a given
diagram y




Can we do Better?

 Importance sampling/VEGAS is learning a
function

= HOT TOPIC: Machine Learning
= |_ot of work in progress

VEGAS
\
S wn7s @ o
D)
E "
§§50
o
E s 2.5
W+2j W+ 3] W4




Can we do Better?

 Importance sampling/VEGAS is learning a
function

= HOT TOPIC: Machine Learning
= |_ot of work in progress

MabNIS
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VEGAS
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improvement
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Event Generation




What is the goal?

s | ™
» Cross-section

- But large theoretical uncertainty}
\_

. ™
- Differential Cross-Section

 Provided as sample of events
- Sample size is problematic

- Those events will need to
have full detector simulation

\_ J




How to get sample?

4 ™
- Monte-Carlo integration use

random points

* We can keep those

* (Uncorrelated) sample

J
~N

Y4

- Points not distributed as the
real function

do *Need to keep track of the
dO D importance of each point
(weight)

‘ \"‘D‘ \ ‘ h = y Iyplcally a lot of event have
H H HHH: . .
KlOW ||||O||||at|0|| )
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Do we need to keep small weight?
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 Discard events below the
minimum
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Do we nee@ito keep small weight?

€ Let’s put a minimum A

* Discard events below the
minimum

* NO! We loose cross-section/ bias
_ ourself y
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#0
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Jf(x)dx = Z:, f(x)



Do we need to keep small weight?
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Do we need to keep small weight?

O@ )

€ Let’s put a minimum

 Discard events below the

minimum
* NO! We loose cross-section/ bias
ourself
“l#100 . /
\

* Let’s put a minimum
# 50

threshold

» But keep 50% of the events below

- Multiply the weight of each event
by 2 (preserve cross-section)

. 1 N
fx)dx = — Z:, f(x)




Do we need to keep small weight?

0@ )

. Let’s put a minimum

* Discard events below the
minimum

* NO! We loose cross-section/ bias
_ ourself y

“l#100

~

* Let’s put a minimum
# 50

threshold » But keep 50% of the events below

- Multiply the weight of each event
by 2 (preserve cross-section)

 We loose information

- But we gain in file size

. 1 N
fx)dx = — Z:, f(x)




Do we need to keep small weight?

4 SO0 threshold

# 100" X

(" Let’s put a threshold

 But keep X*100% of the events
below

\_ by 1/X (preserve cross-section)

- Multiply the weight of each event

~

/




Do we need to keep small weight?
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Do we need to keep small weight?

#100

Threshold

("« Let’s put a threshold )

 But keep X*100% of the events
below

- Multiply the weight of each event

\_ by 1/X (preserve cross-section) /

* Let’s improve

- We could reject more event
(change X) where the
function is small




Do we need to keep small weight?

4 AI0e Threshold

# 100" X

(" Let’s put a threshold
 But keep X*100% of the events

below

- Multiply the weight of each event

by 1/X (preserve cross-section)

~

J

N[

~




Do we need to keep small weight?

(" Let’s put a threshold N
 But keep X*100% of the events
below
- Multiply the weight of each event
\_ by 1/X (preserve cross-section)
4 )
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Do we need to keep small weight?

("« Let’s put a threshold )
 But keep X*100% of the events
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- Multiply the weight of each event
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* Let’s improve
* Let’s make the threshold
proportional to the weight
\_ /




Do we need to keep small weight?

("« Let’s put a threshold )

 But keep X*100% of the events
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Do we need to keep small weight?

(" Let’s put a threshold N
 But keep X*100% of the events
below
- Multiply the weight of each event
\_ by 1/X (preserve cross-section)
) - \
 Let’s improve
4100 - Let’s make the threshold
Threshold proportional to the weight
.. 100
. Keep each event with iy
. Wihres
probability
\_ /




Do we need to keep small weight?

("« Let’s put a threshold )

 But keep X*100% of the events
below

3 - Multiply the weight of each event
\_ by 1/X (preserve cross-section) /

0.28f / , . \
 Let’s improve

4100 * Let’s make the threshold
Threshold proportional to the weight
.. 100
. Keep each event with iy
oy Wihres
probability
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w
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Do we need to keep small weight?

(" Let’s put a threshold N

 But keep X*100% of the events
below

3 - Multiply the weight of each event
\_ by 1/X (preserve cross-section) /

0.28f / , . \
 Let’s improve

4100 - Let’s make the threshold
Threshold proportional to the weight

100w

Wihres

. Keep each event with %

probability

Wthres_
w

. If kept multiply his weight by

» S0 the new weightis w,, .

\_ J
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Do we need to keep small weight?

(" Let’s put a threshold N

 But keep X*100% of the events
below
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Unweighted events

Events distributed as in nature
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Unweighted events

Events distributed as in nature

(. All bins should event event A

proportional to their cross-section
(Up to Poisson distribution)

- All events should have the same
weight

\_ /
4 )
» This correspond to the smallest file

~ ~ - - Slze or maximum compression
do - /

]
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Do we need to keep small weight?

4 . N
* Let’s improve

- Let’s make the threshold
proportional to the weight

» S0 the new weight is w,, .
S J
s )
_#100 threshold
< J
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Do we need to keep small weight?

4 . N
* Let’s improve

- Let’s make the threshold
proportional to the weight

» S0 the new weight is w,, .
\_ /
4 )
- Let’s all event have the same weight

#1004 reshold

..............




Do we need to keep small weight?

4 . N
* Let’s improve

- Let’s make the threshold
proportional to the weight

» S0 the new weight is w,, .
\_ /
4 )
- Let’s all event have the same weight

#100
| threshold « SO set Wy ee > MAX(w)

..............




Do we need to keep small weight?

4 . N
* Let’s improve

- Let’s make the threshold
proportional to the weight

» S0 the new weight is w,, .
\_ /
4 )
- Let’s all event have the same weight

#100
| threshold SO set Wy ee > MAX(w)

- Maximal compression
\_ ),

..............




Do we need to keep small weight?

threshold

- Let’s all event have the same weight
S0 set w,,,. > max(w)

- Maximal compression
\_

4 . )
* Let’s improve
* Let’s make the threshold
proportional to the weight
SO the new weight is w,, .
\_ /
4 )
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Event generation

1 < 1 < fx:
Jf (x)dx — N Zf (xi) i Z f(Xl) Winres
i=1
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2. calculate f(x;)
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4. Compare:
if y <f(x;) accept event,




Event generation

1 & 1 & f(x,)
Jf (x)dx — N lzzl f (xi) — Z Winres

N i=1 Wﬂ’ll’@S

|. pick x;
2. calculate f(x;)
3. pick ¥ € [0,max(f)]

4. Compare:
if y <f(x;) accept event,

else reject it.




Event generation
J Fr)dx = J f ()’) 1 J) 1 J)

dy—— = — == Wihres
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Event generation
J Foodx = J f ()’) 1 J) 1 JO)

d T — Winres

"pO0) N = PO N = POD Winges
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- Having smaller varlance (flatter function) also allows to

have or closer to one and therefore better
Wthr.es max(W)

unweighting efficiency (i.e. faster code)
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