# ·· NLO: How to?

# IWATE COLUDER SCHOOL 2024

#### 26 FEBRUARY - 2 MARCH, 2024

Appi highland, Iwate, Japan



Marco Zaro marco.zaro@mi.infn.it







#### Introduction: Why do we need N<sup>(k)</sup>LO?

why? why? Why? why? why?





#### Discoveries at hadron colliders





#### Discoveries at hadron colliders

 $\begin{array}{c} \text{Peak} \\ H \rightarrow \gamma \gamma \end{array}$ 



Background directly measured from **data**. Theory needed only for parameter extraction

Marco Zaro, ICS 2024





#### Discoveries at hadron colliders

# $\frac{\text{Peak}}{H \rightarrow \gamma \gamma}$

Shape  $ZH \rightarrow l^+l^- + inv.$ 





#### HARD

Background directly measured from **data**. Theory needed only for parameter extraction

Background SHAPE needed. Flexible MC for both signal and background validated and tuned to data





 $L = 2.4 \text{ fb}^{-1}$ 

High S/E

0.8

**NN Output** 

0.6

#### Discoveries at hadron colliders

Shape

 $ZH \rightarrow l^+l^- + inv.$ 

# $\frac{\mathsf{Peak}}{H \rightarrow \gamma \gamma}$





#### HARD

#### VERY HARD

0

0.2

0.4

-0.2

-0.4

Rate

 $H \rightarrow W^+ W^-$ 

**CDF Run II Preliminary** 

 $10^{2}$ 

10<sup>-1</sup>

10<sup>-2</sup>

-1

-0.8

 $\frac{1}{2}$  HWW ME+NN M<sub>H</sub> = 160 [GeV/c<sup>2</sup>]

Background directly measured from **data**. Theory needed only for parameter extraction

Background **SHAPE** needed. Flexible MC for both signal and background validated and tuned to data Relies on prediction for both shape and normalization. Complicated interplay of best simulations and data





# New physics?

- No NP has been discovered yet
- Either there is no NP, or it is hiding very well
- If it is there, it will be a 'Hard' or 'very Hard' discovery
  - Need for accurate predictions for signal and background



| MSUGRACMSSM         0         2-5 / cit         Ves         2.3         6.2         1.7 / Ve         mig-mill         mig-mill <th>Model</th> <th>e, μ, τ, γ</th> <th>.lets</th> <th>Emiss</th> <th>∫<i>L dt</i>[fb</th> <th>Mass limit</th> <th><math display="block">\int \mathcal{L}  dt = (4.6 - 22.9)  \text{fb}^{-1}</math></th> <th><math>\sqrt{s} = 7, 8</math> Te<br/><b>Reference</b></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Model                                                                                                                                                                                  | e, μ, τ, γ      | .lets    | Emiss | ∫ <i>L dt</i> [fb | Mass limit        | $\int \mathcal{L}  dt = (4.6 - 22.9)  \text{fb}^{-1}$                                                                       | $\sqrt{s} = 7, 8$ Te<br><b>Reference</b> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Woder                                                                                                                                                                                  | •,,,,,,,        | Jeis     | Т     | J£ 41[10          |                   |                                                                                                                             |                                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-0                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-0                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MSUGRA/CMSSM                                                                                                                                                                           |                 |          |       |                   |                   |                                                                                                                             | 1308.1841                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1,0}^{\prime}$                                                                                                               |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-0                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \chi_{1}^{\prime}$                                                                                                              |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1 \rightarrow qqW^2\chi_1$                                                                                                           |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-<br>ATLAS-CONF-2013-     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $gg, g \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\ell_1$                                                                                                                                  |                 |          |       |                   |                   |                                                                                                                             | 1208.4688                                |
| GOM (hips) NLSP) $2y$ $i$ $is_{0}$ <th< td=""><td>GMSB (Ž NI SP)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ATLAS-CONF-2013-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GMSB (Ž NI SP)                                                                                                                                                                         |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| GCM (high into NLSP)       1 $l = \mu + \gamma$ ·       is       900 GeV       mt[l]       Socie V       ATL8-SOC         GCM (high into NLSP) $2 = \mu (l)$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$ $3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                 | -        |       |                   |                   |                                                                                                                             | ATLAS-CONF-2014-                         |
| GCM (higgsine-bin NLSP) $\dot{\gamma}$ 1       b       is       900 GeV       m( $\vec{n}$ )       m( $\vec{n}$ )       scole of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                        |                 | -        |       |                   |                   |                                                                                                                             | ATLAS-CONF-2012-                         |
| CGM (higgsino NLSP) $2 \cdot \mu \cdot (Z)$ $0.3 \text{ jets}$ $Yes$ $5.8$ $2 \text{ convince} 4 \text{ Ves}$ $7.13 \text{ conv}$ $m(D) = 0.00 \text{ conv}$ $m(D) = 0.00 \text{ conv}$ $ATLASCC Convertion Converting Conv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                 | 1 b      |       |                   |                   |                                                                                                                             | 1211.1167                                |
| Granultin LSP       0       mono-jet       Ves       0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        | 2 e, µ (Z)      |          |       | 5.8               |                   |                                                                                                                             | ATLAS-CONF-2012-                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gravitino LSP                                                                                                                                                                          |                 | mono-jet | Yes   | 10.5              |                   | m(g)>10 <sup>-4</sup> eV                                                                                                    | ATLAS-CONF-2012-                         |
| $ \begin{array}{c} \frac{2}{3} \frac{2}{3}, \\ \frac{2}{3} - \frac{2}{3} - \frac{2}{3}, \\ \frac{2}{3} - \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a \rightarrow b \bar{b} \tilde{Y}^{0}$                                                                                                                                                | 0               | 3 h      | Yes   | 20.1              | 1.2 TeV           | m(X <sup>0</sup> )<600 GeV                                                                                                  | ATLAS-CONF-2013-                         |
| $ \begin{array}{c} g \\ g $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\delta \rightarrow t t \tilde{\chi}_{1}^{0}$                                                                                                                                          |                 |          |       |                   |                   |                                                                                                                             | 1308,1841                                |
| $\tilde{g} \rightarrow \delta \tilde{t}$ 0.1 $e_{\mu}$ 3 b       Yes       20.1 $\tilde{r}$ 1.3 TeV $m(\tilde{t})_{-300  GeV}$ ALASCC $\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow \delta \tilde{t}_{1}^{0}$ 0       2 $e_{\mu}$ (SS)       0.3 b       Yes       20.1 $\tilde{b}_{1}$ 100-620 GeV $m(\tilde{t}_{1}^{2})_{-30  GeV}$ $m(\tilde{t}_{1}^{2})_{-30  GeV}$ ALASCC $\tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow \delta \tilde{t}_{1}^{0}$ 2 $e_{\mu}$ (SS)       0.3 b       Yes       20.1 $\tilde{b}_{1}$ 100-620 GeV $m(\tilde{t}_{1}^{2})_{-30  GeV}$ $m(\tilde{t}_{1}^{2})_{-30  GeV}$ ALASCC $\tilde{t}_{1}\tilde{t}(1)(du)t, \tilde{t}_{1} \rightarrow \delta \tilde{t}_{1}^{0}$ 2 $e_{\mu}$ (2) lets Yes       20.3 $\tilde{t}_{1}$ 130-210 GeV $m(\tilde{t}_{1}^{2})_{-30  GeV}$ $m(\tilde{t}_{1})_{-30  GeV}$ $m(\tilde{t}_{1})_{-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | 0-1 e, µ        |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013                          |
| $ \begin{array}{c} & \tilde{h}_{1}^{+} \tilde{h}_{1}^{+} \tilde{h}_{1}^{+} \tilde{h}_{1}^{+} \tilde{h}_{1}^{+} & 2 \\ \tilde{h}_{1}^{+} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+}$                                                                                                                                 | 0-1 e, µ        | 3 b      |       | 20.1              |                   |                                                                                                                             | ATLAS-CONF-2013                          |
| $ \begin{array}{c} \tilde{h}_{1}^{-1} \tilde{h}_{1}^{-1} \tilde{h}_{1}^{-1} = \ell_{1}^{-1} & 2 \ e^{\mu} (SS) & 0.3 \ h \ Ves \ 20.7 \ b_{1} & 2 \ e^{\mu} SS \\ \tilde{h}_{1}^{-1} (IIGH), \tilde{h}_{1} \rightarrow \delta \tilde{h}_{1}^{-1} SS \\ \tilde{h}_{1}^{-1} (IIGH), \tilde{h}_{1} \rightarrow \delta \tilde{h}_{1}^{-1} \\ \tilde{h}_{1}^{-1} (IIGH), $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{L}$ , $\tilde{L}$ , $\tilde{L}$ , $t\tilde{V}^0$                                                                                                                               | 0               | 2 h      | Vos   | 20.1              | 100-620 GeV       |                                                                                                                             | 1308,2631                                |
| $ \begin{array}{c} & f_{11}^{-1}(\operatorname{ind}_{11}, f_{1} \rightarrow \mathrm{K}_{1}^{-1}) & 1 \geq c, \mu & 1 \geq b & \mathrm{Yes} & 4.7 & f_{1} & 110 \geq 167  \mathrm{GeV} & \mathrm{m}(t_{1}^{2}) \rightarrow \mathrm{GeV} & \mathrm{m}(t$ |                                                                                                                                                                                        |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| $\tilde{r}_{11}(\operatorname{Inestrue}), \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.1 $\tilde{r}_{1}$ 150-580 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}, m(\tilde{r}_{1}^{2}) = 5.6 \text{ eV}$ 139 $\tilde{r}_{11}(\operatorname{Inestrue}), \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.5 $\tilde{r}_{1}$ 200-610 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}, m(\tilde{r}_{1}^{2}) = 5.6 \text{ eV}$ ALLASCC $\tilde{r}_{11}, \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.3 $\tilde{r}_{1}$ 90-200 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}$ $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{D}_{10}(0, 0) \rightarrow \tilde{D}_{10}(0, 0)$                                                                                                                                |                 |          |       |                   |                   |                                                                                                                             | 1208.4305, 1209.21                       |
| $\tilde{r}_{11}(\operatorname{Inestrue}), \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.1 $\tilde{r}_{1}$ 150-580 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}, m(\tilde{r}_{1}^{2}) = 5.6 \text{ eV}$ 139 $\tilde{r}_{11}(\operatorname{Inestrue}), \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.5 $\tilde{r}_{1}$ 200-610 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}, m(\tilde{r}_{1}^{2}) = 5.6 \text{ eV}$ ALLASCC $\tilde{r}_{11}, \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.3 $\tilde{r}_{1}$ 90-200 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}$ $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow W h \tilde{\chi}_1^0$                                                                                                      |                 |          |       |                   |                   |                                                                                                                             | 1403,4853                                |
| $\tilde{r}_{11}(\operatorname{Inestrue}), \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.1 $\tilde{r}_{1}$ 150-580 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}, m(\tilde{r}_{1}^{2}) = 5.6 \text{ eV}$ 139 $\tilde{r}_{11}(\operatorname{Inestrue}), \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.5 $\tilde{r}_{1}$ 200-610 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}, m(\tilde{r}_{1}^{2}) = 5.6 \text{ eV}$ ALLASCC $\tilde{r}_{11}, \tilde{r}_{1} \rightarrow k_{1}^{2}$ 0       2 b       Yes       20.3 $\tilde{r}_{1}$ 90-200 GeV $m(\tilde{r}_{1}^{2}) \sim 0.00 \text{ eV}$ $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{t}_1 \tilde{t}_1 \text{ (medium)}, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$                                                                                                 |                 | 2 jets   | Yes   | 20.3              |                   |                                                                                                                             | 1403.4853                                |
| $\tilde{f}_{1}(heav), \tilde{f}_{1} \rightarrow \ell_{1}^{2}$ $1 - \mu$ $1 - b$ Yes $20.7$ $\tilde{f}_{1}$ $200-610$ $m(\tilde{f}_{1}^{2}) - 0$ ceV $A1LASCC$ $\tilde{f}_{1}(heav), \tilde{f}_{1} \rightarrow \kappa^{2}$ $0$ $2b$ Yes $20.5$ $\tilde{f}_{1}$ $200-610$ $m(\tilde{f}_{1}^{2}) - 0$ ceV $A1LASCC$ $\tilde{f}_{1}(heav), \tilde{f}_{1} \rightarrow \kappa^{2}$ $0$ $0 - b^{2}$ Yes $20.3$ $\tilde{f}_{1}$ $30-200$ GeV $m(\tilde{f}_{1}^{2}) - 0$ ceV $A1LASCC$ $\tilde{f}_{1}(hacv), \tilde{f}_{1} \rightarrow \tilde{f}_{1}^{2}$ $0$ $0 - b^{2}$ $2s$ $\tilde{f}_{1}^{2}$ $3c, \mu(Z)$ $1b$ $Yes$ $20.3$ $\tilde{f}_{1}^{2}$ $3c, \mu(Z)$ $1c$ $M1ASCC$ $\tilde{f}_{1}(h_{1}, \kappa^{2}) \rightarrow \tilde{f}_{1}^{2}$ $2s, \mu(Z)$ $1b$ $Yes$ $20.3$ $\tilde{f}_{1}^{2}$ $3c, \mu(Z)$ $m(\tilde{f}_{1}^{2}) - 0$ $m($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\tilde{t}_1 \tilde{t}_1 \pmod{m}$ , $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$                                                                                                  | 0               | 2 b      | Yes   | 20.1              | 150-580 GeV       | $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$            | 1308.2631                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$                                                                                                        | 1 e, µ          | 1 b      | Yes   | 20.7              | 200-610 GeV       | m( $\tilde{\chi}_{1}^{0}$ )=0 GeV                                                                                           | ATLAS-CONF-2013-                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$                                                                                                        |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\vec{\mathbf{t}}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$                                                                                                           |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                 |          |       |                   |                   |                                                                                                                             | 1403.5222                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $t_2t_2, t_2 \rightarrow t_1 + Z$                                                                                                                                                      |                 | 1 b      | Yes   | 20.3              | 290-600 GeV       | m(X1)<200 GeV                                                                                                               | 1403.5222                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$                                                                                                 |                 |          |       |                   |                   |                                                                                                                             | 1403.5294                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{\dagger}, \tilde{\chi}_{1}^{\dagger} \rightarrow \ell \nu(\ell \tilde{\nu})$                                                              |                 | 0        |       |                   | 140-465 GeV       |                                                                                                                             | 1403.5294                                |
| $ \begin{array}{c} \frac{1}{k_{1}^{2} (\frac{1}{k_{2}^{2} - w_{1}^{2} (\frac{1}{k_{2}^{2}})}^{2} - \frac{1}{k_{2}^{2}} + \frac{1}{k_{2}^{2} - w_{1}^{2} (\frac{1}{k_{2}^{2}})} & \frac{1}{k_{1}^{2} - \frac{1}{k_{2}^{2}}} & \frac{1}{k_{2}^{2} - \frac{1}{k_{2}^{2} - \frac{1}{k_{2}^{2}}} & \frac{1}{k_{2}^{2} - \frac{1}{k_{2}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        |                 | -        |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| $\frac{1}{2}\frac{1}{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        |                 |          |       |                   |                   |                                                                                                                             | 1402.7029<br>1403.5294, 1402.70          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\chi_1^-\chi_2 \rightarrow W\chi_1^-Z\chi_1^-$<br>$\chi^{\pm}\chi^0 \rightarrow W\chi_1^-Z\chi_1^-$                                                                                   |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |                 |          |       |                   |                   |                                                                                                                             |                                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Direct $\hat{X}_1^{\dagger} \hat{X}_1^{\dagger}$ prod., long-lived $\hat{X}_1^{\dagger}$                                                                                               |                 |          |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Graphe, stopped g n-hadron                                                                                                                                                             |                 | 1-5 JetS |       |                   |                   | m(t <sub>1</sub> )=100 GeV, 10 μs<τ(ĝ)<1000 s<br>10 <tenβ<50< td=""><td>ATLAS-CONF-2013<br/>ATLAS-CONF-2013</td></tenβ<50<> | ATLAS-CONF-2013<br>ATLAS-CONF-2013       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GMSB $\tilde{V}_{0}^{0} \rightarrow \tilde{C}$ long-lined $\tilde{V}_{0}^{0}$                                                                                                          | μ) . 2 μ<br>2 ν | -        |       |                   |                   |                                                                                                                             | 1304.6310                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tilde{a}\tilde{a}, \tilde{\chi}_{1}^{0} \rightarrow aau$ (BPV)                                                                                                                       |                 | -        |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        | 2               |          |       | 4.6               | 1.01 T-V          |                                                                                                                             | 1212.1272                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                 | -        |       |                   |                   |                                                                                                                             | 1212.1272                                |
| $ \frac{\tilde{k}_{1}^{2}\tilde{k}_{1}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow W_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{1}^{2}\rightarrow w_{1}\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{1}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},\tilde{k}_{2}^{2},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                        |                 | 7 iets   | Yes   |                   |                   |                                                                                                                             | ATLAS-CONF-2012                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                        |                 | - 1010   |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013                          |
| ĝ→rigri, ĵ→rigri         0         6-7 jets         2.0.3         ĝ         916 GeV         BR(r)=BR(b)=BR(c)=0%         ATUAS-CC           ĝ→ri(r, ĵ→rbs         2.c.µ (SS)         0.3 b         Yes         2.0.3         ĝ         880 GeV         ATUAS-CC         ATUAS-CC           Scalar gluon pair, sgluon → rig         0         4 jets         - 4.6         sgluon         100-287 GeV         incl. limit from 1110.2693         121           Scalar gluon pair, sgluon → ri         2.c.µ (SS)         2.b         Yes         14.3         sgluon         100-287 GeV         350-800 GeV         ATUAS-CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{-} e \tau \tilde{\nu}_{-}$ |                 | -        |       |                   |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| Scalar gluon pair, sgluon→qq̄         0         4 jets         4.6         sgluon         100-287 GeV         incl. limit from 1110.2693         121           Scalar gluon pair, sgluon→tī         2 ε,μ (SS)         2 b         Yes         14.3         sgluon         350-800 GeV         incl. limit from 1110.2693         121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                 | 6-7 jets |       | 20.3              |                   |                                                                                                                             | ATLAS-CONF-2013-                         |
| Scalar gluon pair, sgluon →tr 2 e, µ (SS) 2 b Yes 14.3 sgluon 350-800 GeV ATLAS-CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        | 2 e, µ (SS)     | 0-3 b    | Yes   | 20.7              | 880 GeV           |                                                                                                                             | ATLAS-CONF-2013-                         |
| Scalar gluon pair, sgluon →tī 2 e,µ (SS) 2 b Yes 14.3 sgluon 350-800 GeV ATLAS-CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scalar gluon pair, sgluon→aā                                                                                                                                                           | 0               | 4 jets   | -     | 4.6               | aluon 100-287 GeV | incl. limit from 1110.2693                                                                                                  | 1210.4826                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                 |          | Yes   |                   |                   |                                                                                                                             | ATLAS-CONF-2013                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                 |          |       |                   |                   | m(\chi)<80 GeV, limit of<687 GeV for D8                                                                                     | ATLAS-CONF-2012-                         |
| $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                 | -        |       |                   |                   |                                                                                                                             | J                                        |

m a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 $\sigma$  theoretical signal cross section uncertainty





#### Cross-section measurements

- The discovery of the Higgs boson is an emblematic example of the need for precision
- Large perturbative corrections for the dominant channel (gluon fusion)
- Without higher-order corrections, measured signal strength ~3 \* SM









#### How to compute a cross-section



Marco Zaro, ICS 2024





 $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$  Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

aramatar

$$\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots$$

Remember:  

$$\alpha_s = \alpha_s(\mu_R) \qquad \sigma_i = \sigma_i(\mu_R, \mu_F)$$
  
Coupling and cross section depend on *unphysical* scales





#### $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

$$\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots$$

Remember:  $\alpha_s = \alpha_s(\mu_R)$   $\sigma_i = \sigma_i(\mu_R, \mu_F)$ Coupling and cross section depend on *unphysical* scales





#### $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

$$\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots$$
LO NLO
Remember:
$$\alpha_s = \alpha_s(\mu_R) \qquad \sigma_i = \sigma_i(\mu_R, \mu_F)$$
Coupling and cross section depend on *unphysical* scales





#### $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion







#### $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion







- The inclusion of higher orders improves the reliability of a given computation
  - More reliable description of total rates and shapes
  - Residual uncertainties related to the arbitrary scales in the process decrease
  - The computational complexity grows exponentially
  - NLO is mandatory for LHC physics!









- In order to describe data, LO predictions must be rescaled to match the cross section including higher orders (typically NNLO)
- NLO predictions are generally not rescaled
   →More predictive power
- NLO effects can be important even if merged samples are used at LO

Marco Zaro, ICS 2024





#### In these lectures:

- How to compute effectively a NLO cross section?
  - How to deal with infrared divergences?
  - How to compute loops?
  - How about EW corrections?



Join at slido.com #141 171





# NLO (pre)history

- NLO evolution:
  - e.g.  $pp \rightarrow W+n$  jets







# NLO (pre)history

- NLO evolution:
  - e.g.  $pp \rightarrow W+n$  jets







# NLO (pre)history

- NLO evolution:
  - e.g.  $pp \rightarrow W+n$  jets







## NLO revolution

- Amazing development of computational techniques to tackle any process at NLO
  - Local subtraction
- Computation of loop MEs
  - Tensor reduction
  - Generalized unitarity
  - Integrand reduction

Frixione, Kunszt, Signer, hep-ph/9512328 Catani, Seymour, hep-ph/9605323

Passarino, Veltman, 1979 Denner, Dittmaier, hep-ph/509141 Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + ... Ellis, Giele, Kunszt, arXiv:0708.2398 + Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007 Del Aguila, Pittau, hep-ph/0404120 Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710



# The NNLO revolution is happening now!





Adapted from G. Zanderighi @LHCP23





$$\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots$$

- NLO is the first order where the scale dependence in Q<sub>s</sub> and PDFs is compensated by loop corrections
  - First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond





$$\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots$$
 Lo

- NLO is the first order where the scale dependence in α<sub>s</sub> and PDFs is compensated by loop corrections
  - First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond







- NLO is the first order where the scale dependence in α<sub>s</sub> and PDFs is compensated by loop corrections
  - First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond







- NLO is the first order where the scale dependence in α<sub>s</sub> and PDFs is compensated by loop corrections
  - First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond







- NLO is the first order where the scale dependence in α<sub>s</sub> and PDFs is compensated by loop corrections
  - First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond





#### NLO: how to?

• Three ingredients need to be computed at NLO

$$\sigma_{NLO} = \int_{n} \alpha_{s}^{b} d\sigma_{0} + \int_{n} \alpha_{s}^{b+1} d\sigma_{V} + \int_{n+1} \alpha_{s}^{b+1} d\sigma_{R}$$
Born Virtual Real-emission corrections corrections

 Remember: virtual and reals are not separately finite, but their sum is (KLN theorem). Divergences have to be subtracted before numerical integration. We will shortly see how





#### Infrared divergences







#### Branching



$$\int_{n+1} \alpha_s^{b+1} d\sigma_R$$

- When the integral over the phasespace of the gluon is performed, one can have  $(p_q+p_g)^2=0$
- Since  $(p_q+p_g)^2=2E_qE_g(1-\cos\theta)$  it happens when the gluon is soft  $(E_g=0)$ or collinear to the quark  $(\theta=0)$
- In both cases, the propagator leads to a divergent cross section





## Singularities

• Let us rewrite the branching of a gluon from a quark as

 $\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$ Where  $k_t$  is the transverse momentum of the gluon  $k_t = E \sin\theta$ . It diverges in the soft  $(z \rightarrow 1)$  and collinear  $(k_t \rightarrow 0)$  region

• These singularities cancel with the virtual contribution, which comes from the integration of the loop momentum

$$\sigma_{\rm h} \stackrel{\prime \prime}{\longrightarrow} \frac{\rho \rho}{\tau} \frac{\rho \rho}{\pi} \sigma_{h+V} \simeq -\sigma_h \frac{\alpha_{\rm s} C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

• The cancelation happens if we cannot distinguish between the case of no branching, and that of a soft/collinear branching



Marco Zaro, ICS 2024





#### Cancellation of divergences

- The KLN theorem tells us that divergences from the virtual and real emission cancel in the sum *if observables are insensitive to* soft and collinear branchings (IR-safety)
- When doing an analytic computation in dimensional regularisation, divergences appear as poles in the regularisation parameter  $\epsilon$
- In the real emissions, poles appear *after* the phase space integration in *d* dimension





#### Infrared safety

- In order to have meaningful predictions in fixed-order perturbation theory, observables must be IR-safe, *i.e.* not sensitive to the emission of soft or collinear partons.
- In particular, if an observable depends on the momentum  $p_i$ , it must not be sensitive on the branching  $p_i \rightarrow p_j + p_k$ , where either  $p_j$  is soft or  $p_j$  and  $p_k$  are collinear
- For example
  - The number of gluons in an event
  - The number of jets with  $p_T > p_T^{min}$
  - The hardest parton in an event
  - The hardest jet





#### Infrared safety

- In order to have meaningful predictions in fixed-order perturbation theory, observables must be IR-safe, *i.e.* not sensitive to the emission of soft or collinear partons.
- In particular, if an observable depends on the momentum  $p_i$ , it must not be sensitive on the branching  $p_i \rightarrow p_j + p_k$ , where either  $p_j$  is soft or  $p_j$  and  $p_k$  are collinear
- For example
  - The number of gluons in an event
  - The number of jets with  $p_T > p_T^{min}$
  - The hardest parton in an event
  - The hardest jet



Join at slido.com #141 171





#### Infrared safety

- In order to have meaningful predictions in fixed-order perturbation theory, observables must be IR-safe, *i.e.* not sensitive to the emission of soft or collinear partons.
- In particular, if an observable depends on the momentum  $p_i$ , it must not be sensitive on the branching  $p_i \rightarrow p_j + p_k$ , where either  $p_j$  is soft or  $p_j$  and  $p_k$  are collinear
- For example
  - The number of gluons in an event is not IR-safe
  - The number of jets with  $p_T > p_T^{min}$  is IR-safe
  - The hardest parton in an event is not IR-safe
  - The hardest jet is IR-safe





Join at slido.com #141 171



20





#### Phase space integration

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$
  
contains  $\int d^d l$ 

- For complicated processes the integrations have to be done via MonteCarlo techniques, in an integer number of dimensions
- Divergences have to be canceled explicitly
- Slicing/Subtraction methods have been developed to extract divergences from the phase-space integrals





# Example

• Suppose that we can cast the phase space integral in the form

$$\int_0^1 dx f(x) \quad \text{with} \quad f(x) = \frac{g(x)}{x} \quad \text{ and } g(x) \text{ a regular function}$$

• We introduce a regulator which renders the integral finite

$$\int_0^1 dx x^{\varepsilon} f(x) = \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• The divergence will turn into a pole in  $\varepsilon$ . How can we extract the pole?





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter  $\delta \ll 1$ :

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter  $\delta \ll 1$ :

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$\simeq \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter  $\delta \ll 1$ :

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$\simeq \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter  $\delta \ll 1$ :

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$\simeq \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}$$
$$= \lim_{\varepsilon \to 0} \left( \frac{1}{\varepsilon} + \log \delta \right) g(0) + \int_\delta^1 dx \frac{g(x)}{x}$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter  $\delta \ll 1$ :

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$\simeq \lim_{\varepsilon \to 0} \left( \int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)$$
$$= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}$$
$$= \lim_{\varepsilon \to 0} \left( \frac{1}{\varepsilon} + \log \delta \right) g(0) + \int_\delta^1 dx \frac{g(x)}{x}$$

pole in  $\varepsilon$ 





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter  $\delta \ll 1$ :

$$\begin{split} \lim_{\varepsilon \to 0} \int_{0}^{1} dx \frac{g(x)}{x^{1-\varepsilon}} &= \lim_{\varepsilon \to 0} \left( \int_{0}^{\delta} dx \frac{g(x)}{x^{1-\varepsilon}} + \int_{\delta}^{1} dx \frac{g(x)}{x^{1-\varepsilon}} \right) \\ &\simeq \lim_{\varepsilon \to 0} \left( \int_{0}^{\delta} dx \frac{g(0)}{x^{1-\varepsilon}} + \int_{\delta}^{1} dx \frac{g(x)}{x^{1-\varepsilon}} \right) \\ &= \lim_{\varepsilon \to 0} \frac{\delta^{\varepsilon}}{\varepsilon} g(0) + \int_{\delta}^{1} dx \frac{g(x)}{x} \\ &= \lim_{\varepsilon \to 0} \left( \frac{1}{\varepsilon} \right) + \log \delta \right) g(0) + \underbrace{\int_{\delta}^{1} dx \frac{g(x)}{x}}_{\delta} \quad \text{finite integral} \\ &\text{pole in } \varepsilon \quad \text{(can be computed numerically)} \end{split}$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left( \frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left( \frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)$$
$$= \lim_{\varepsilon \to 0} \int_0^1 dx \left( \frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left( \frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)$$
$$= \lim_{\varepsilon \to 0} \int_0^1 dx \left( \frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)$$
$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x}$$





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• Add and subtract g(0)/x

$$\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^\varepsilon \left( \frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)$$
$$= \lim_{\varepsilon \to 0} \int_0^1 dx \left( \frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)$$
$$= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x}$$

pole in  $\varepsilon$ 





$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

$$\begin{split} \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} &= \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left( \frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right) \\ &= \lim_{\varepsilon \to 0} \int_0^1 dx \left( \frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right) \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x} & \text{finite integral} \\ & \text{pole in } \varepsilon & \text{(can be computed numerically)} \end{split}$$





# Slicing vs Subtraction

 In both cases the pole is extracted and we end up with a finite remainder:

$$g(0)\log\delta + \int_{\delta}^{1} dx \frac{g(x)}{x} \int_{0}^{1} dx \frac{g(x) - g(0)}{x}$$

- Subtraction acts like a plus distribution
- Slicing works only for small  $\delta$ :  $\delta$ -independence of cross section and distributions must be proven; subtraction is exact
- Both methods have cancelations between large numbers. If for a given observable  $\lim_{x\to 0} O(x) \neq O(0)$  or we choose a too small bin size, instabilities will arise (we cannot ask for an infinite resolution)
- Subtraction is in general more flexible: good for automation





# NLO with subtraction

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$

• With the subtraction terms the expression becomes

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \left( \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right)_{\varepsilon \to 0} + \int d^4 \Phi_{n+1} \left( \mathcal{R} - \mathcal{C} \right)$$

• Terms in brackets are finite and can be integrated numerically in d=4 and independently one from another





# NLO with subtraction

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$

• With the subtraction terms the expression becomes

$$\begin{split} \sigma_{NLO} &= \int d^4 \Phi_n \mathcal{B} \\ &+ \int d^4 \Phi_n \left( \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right) \overset{\text{Poles cancel from}}{\underset{\varepsilon \to 0}{d\text{-dim integration}}} \\ &+ \int d^4 \Phi_{n+1} \left( \mathcal{R} - \mathcal{C} \right) \end{split}$$

• Terms in brackets are finite and can be integrated numerically in d=4 and independently one from another





# NLO with subtraction

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$

• With the subtraction terms the expression becomes

$$\begin{split} \sigma_{NLO} &= \int d^4 \Phi_n \mathcal{B} \\ &+ \int d^4 \Phi_n \left( \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right) \overset{\text{Poles cancel from}}{\underset{\varepsilon \to 0}{d-\text{dim integration}}} \\ &+ \int d^4 \Phi_{n+1} \left( \mathcal{R} - \mathcal{C} \right) \overset{\text{Integrand is finite in}}{\underset{\text{4 dimension}}{4 \text{ dimension}}} \end{split}$$

 Terms in brackets are finite and can be integrated numerically in d=4 and independently one from another





# The subtraction term

- The subtraction term C should be chosen such that:
  - It exactly matches the singular behaviour of R
  - It can be integrated numerically in a convenient way
  - It can be integrated exactly in d dimension, leading to the soft and/or collinear poles in the dimensional regulator
  - It is process independent (overall factor times Born)





# The subtraction term

- The subtraction term C should be chosen such that:
  - It exactly matches the singular behaviour of R
  - It can be integrated numerically in a convenient way
  - It can be integrated exactly in d dimension, leading to the soft and/or collinear poles in the dimensional regulator
  - It is process independent (overall factor times Born)
- QCD comes to help: structure of divergences is universal:

$$(p+k)^{2} = 2E_{p}E_{k}(1-\cos\theta_{pk})$$
• Collinear singularity:  

$$\lim_{p//k} |M_{n+1}|^{2} \simeq |M_{n}|^{2} P^{AP}(z)$$
• Soft singularity:  

$$\lim_{k \to 0} |M_{n+1}|^{2} \simeq \sum_{ij} |M_{n}^{ij}|^{2} \frac{p_{i}p_{j}}{p_{i}k p_{j}k}$$
CS 2024





# Two subtraction methods

#### Dipole subtraction

Catani, Seymour, hep-ph/9602277 & hep-ph/9605323

- Recoil taken by one parton  $\rightarrow N^3$  scaling
- Method evolves from cancelation of soft divergences
- Proven to work for simple and complicated processes
- Automated in MadDipole, AutoDipole, Sherpa, Helac-NLO, ...

#### FKS subtraction

Frixione, Kunszt, Signer, hep-ph/9512328

- Recoil distributed among all particles
   →N<sup>2</sup> scaling
- Method evolves from cancelation of collinear divergences
- Proven to work for simple and complicated processes
- Automated in MadGraph5\_aMC@NLO and in the Powheg box/Powhel





# FKS subtraction #I Phase space partition

• Let us consider the real emission

$$d\sigma_R = \left| M^{n+1} \right|^2 d\Phi_{n+1}$$

• The matrix element  $|M^{n+1}|^2$  diverges as

$$|M^{n+1}| \sim \frac{1}{\xi_i^2} \frac{1}{1 - y_{ij}} \qquad \qquad \xi_i = E_i \sqrt{\hat{s}} \\ y_{ij} = \cos \theta_{ij}$$

 Partition the phase space in order to have at most one soft and one collinear singularity

$$d\sigma_R = \sum_{ij} S_{ij} |M^{n+1}|^2 d\Phi_{n+1} \qquad \sum_{ij} S_{ij} = 1$$
$$S_{ij} \to 1 \text{ if } k_i \cdot k_j \to 0 \qquad S_{ij} \to 0 \text{ if } k_{m\neq i} \cdot k_{n\neq j} \to 0$$





# FKS subtraction #2 Plus prescriptions

• Use plus prescriptions in  $y_{ij}$  and  $\xi_i$  to subtract the divergences

$$d\sigma_{\tilde{R}} = \sum_{ij} \left(\frac{1}{\xi_i}\right)_+ \left(\frac{1}{1-y_{ij}}\right)_+ \xi_i (1-y_{ij}) S_{ij} \left|M^{n+1}\right|^2 d\Phi_{n+1}$$

• Plus prescriptions are defined as

$$\int d\xi \left(\frac{1}{\xi}\right)_{+} f(\xi) = \int d\xi \frac{f(\xi) - f(0)}{\xi} \qquad \int dy \left(\frac{1}{1 - y}\right)_{+} g(y) = \int dy \frac{g(y) - g(1)}{1 - y}$$

- Maximally three counterevents are needed
  - Soft counterevent ( $\xi_i \rightarrow 0$ )
  - Collinear counterevents  $(y_{ij} \rightarrow 1)$
  - Soft-collinear counterevents ( $\xi_i \rightarrow 0$  and  $y_{ij} \rightarrow 1$ )
- The counterevents will feature the same kinematics





# Kinematics of counterevents



Real emission

Subtraction term

lution

- If i and j are on-shell in the event, for the counterevent the combined particle i+j must be on shell
- *i+j* can be put on shell only be reshuffling the momenta of the other particles
- It can happen that event and counterevent end up in different histogram bins
  - Us  $\sigma_h$  afe observables and don't ask for infinit  $\sigma_h$
  - Still, cse precautions do not eliminate the prob





# An example in 4-lepton production

The NLO result shows the typical peak-dip structure that hampers fixed-order computation







# Can we generate unweighted events at NLO?

- Another consequence of the kinematic mismatch is that we cannot generate events at NLO
- *n*+1-body contribution and *n*-body contribution are not bounded from above → unweighting not possible
- Further ambiguity on which kinematics to use for the unweighted events





# Can we generate unweighted events at NLO?

- Another consequence of the kinematic mismatch is that we cannot generate events at NLO
- *n*+1-body contribution and *n*-body contribution are not bounded from above → unweighting not possible
- Further ambiguity on which kinematics to use for the unweighted events

More tomorrow





# Filling histograms on-the-fly

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \left( \mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right)_{\varepsilon \to 0} + \int d^4 \Phi_{n+1} \left( \mathcal{R} - \mathcal{C} \right)$$

- In practice, two set of momenta are generated during the MC integration
  - One (or more) *n*-body set(s), for Born, virtuals and counterterms
  - One n+1-body set, for the real emission
- The various terms are computed. Cuts are applied on the corresponding momenta and histograms are filled with the weight and kinematics of each term





## Instabilities at fixed order

 Besides the mis-binning problem, the kinematics mismatch can lead to odd behaviours of certain observables, in particular when some constraint coming from the *n*-body kinematics is relaxed in the *n*+1-body one









# Subtracting IR divergences: Summary

- Virtual and real matrix element are not finite, but their sum is. Subtraction methods can be used to extract divergences for real-emission matrix elements and cancel explicitly the poles from the virtuals
- Event and counterevents have different kinematics. Unweighting is not possible, we need to fill plots on-the-fly with weighted events
- For plots, only IR-safe observable with finite resolution must be used!





- Suppose we have a code for pp→tt @NLO. Are all the following (IR-safe) variables described at NLO?
  - top  $p_T$
  - $t\bar{t}$  pair  $p_T$
  - tt pair invariant mass
  - jet (extra parton)  $p_T$
  - tt azimuthal distance







Suppose we have a code for pp→tt @NLO.Are all the following (IR-safe) variables described at NLO?

YES

- **top** *pT*
- $t\bar{t}$  pair  $p_T$
- tt pair invariant mass
- jet (extra parton)  $p_T$
- tt azimuthal distance





- Suppose we have a code for pp→tt @NLO.Are all the following (IR-safe) variables described at NLO?
  - **top** *pT*
  - $t\bar{t}$  pair  $p_T$
  - tt pair invariant mass
  - jet (extra parton)  $p_T$
  - tt azimuthal distance









- Suppose we have a code for pp→tt @NLO.Are all the following (IR-safe) variables described at NLO?
  - **top** *pT*
  - $t\bar{t}$  pair  $p_T$
  - tt pair invariant mass
  - jet (extra parton)  $p_T$
  - tt azimuthal distance

YES NO YES







- Suppose we have a code for pp→tt @NLO.Are all the following (IR-safe) variables described at NLO?
  - **top** *pT*
  - $t\bar{t}$  pair  $p_T$
  - tt pair invariant mass
  - jet (extra parton)  $p_T$
  - tt azimuthal distance

YES NO YES NO







- Suppose we have a code for pp→tt @NLO.Are all the following (IR-safe) variables described at NLO?
  - top *pT*
  - $t\bar{t}$  pair  $p_T$
  - tt pair invariant mass
  - jet (extra parton)  $p_T$
  - tt azimuthal distance

YES NO YES NO







# From QCD to EW corrections

a brief overview





• QCD corrections general y in the second of computations (shrink t

dσ/dp<sub>T</sub> [pb/GeV]

10<sup>-3</sup>

 $10^{-4}$ 

- EW corrections necessary to improve we accuracy of predictions, specially in the tails of distributions (Sudakov enhancement)
- EW corrections are crucial at lepton colliders
- EW and complete-NLO corrections NLOgeD+EW 10<sup>-2</sup> automated! Sherpa+Openloops: 1412(51)57, Sherpa+Recola.06704.05783 MG5\_aMC: 1804 a0047
   In some cases, EW corrections do not behave go 10<sup>-4</sup>
- as expected: can give effects as large as QCD!



 $|m(\ell^+\ell^-) - m_7| < 10 \text{ GeV}$ 

NLO<sub>QCD</sub>

ering

LO —











#### Sudakov enhancement

Denner, Pozzorini, hep-ph/0010201 & hep-ph/0104127 Pagani, MZ, arXiv:2110.03714

- EW bosons are massive: a real W/Z/Higgs emission is detectable (at least in principle)
- Radiation of W/Z/Higgs bosons is in general not included in EW corrections, which remain finite
- When the process scale Q is large,  $Q \gg M \sim m_W, m_Z, m_H$ the would-be IR divergence associated to the heavy boson shows up with double and single log(Q/M)
- In the regime where all invariants are  $\gg$ M, these logs are universal, and exponentiate at all orders (resummation possible)
- Sudakov approximation is excellent at high-energy (only a constant part is missing)



[GeV]<sup>-4</sup>

Ratio over LO



√*s* [GeV]





#### Large EW corrections: not only Sudakov logs

- Despite the naive estimate  $\alpha \sim \alpha_s^2$ , there are cases when EW corrections comparable to NLO QCD or larger. It happens when:
  - Large scales are probed (VBS) feature of all VBS channels, see also Denner et al, 1904.00882, 2009.00411
  - Power counting is altered (4 top:  $y_t$  vs  $\alpha$ )
  - New production mechanisms, different than those at the "dominant" LO, enter (ttW, bbH)









#### Anatomy of EW corrections: EW corrections vs EW effects

- A general process has more contributions at LO, NLO, ...
- Example: top pair



- The LO is often identified with the contribution with most  $\alpha_s$
- At NLO the first two contributions are identified with the NLO QCD and NLO EW corrections
- This structures induces mixed QCD-EW effects at NLO: NLO<sub>i</sub> = LO<sub>i-1</sub> ⊗ EW + LO<sub>i</sub> ⊗ QCD

Marco Zaro, ICS 2024





#### Multi-coupling expansion

### Single coupling $\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots$ LO NLO NNLO NNNLO

#### Multi-coupling





#### Multi-coupling expansion





# Steps towards the automation of EW corrections

- Apart for the (much) more complex book-keeping, automation of NLO EW corrections largely builds on techniques for NLO QCD (modulo bookkeeping)
- IR subtraction: techniques established for QCD corrections can be extended to EW ones
- Replace color factors with charges  $(C_F \rightarrow q_i^2, C_A \rightarrow 0, T_F \rightarrow N_{C,i} q_i^2)$  Replace color-linked Borns with charge-links
- Loop amplitudes: one-loop techniques can be exploited for EW loops.
- UV/R2 counterterms for the EW interactions are needed
- Higher ranks appear, integrand-reduction may lead to unstable results Switch to other techniques (Tensor-integral reduction, Laurent-series expansion,...)
- Use scalar-integral libraries that support complex masses





#### EW renormalisation schemes in a nutshell

The renormalisation of  $\alpha$  can be performed in different schemes:

- $\alpha(0)$ :  $\alpha$  is measured in the Thompson scattering, in the zero-momentum limit. Terms  $\sim \log(Q/m_f)$  appear in the cross section, except for external photons. Fermion masses must be retained.
- $\alpha(M_Z)$ :  $\alpha$  is measured at the Z peak (e.g. at LEP). It removes the dependence on the fermion masses, which can be set to zero.
- $G_{\mu}$  scheme: the Fermi constant is measured from the muon lifetime, then  $\alpha$  is extracted. W.r.t. the  $\alpha(M_Z)$  scheme, also contributions of weak origin  $(\Delta \rho)$  are resummed

The  $G_{\mu}$  scheme is generally preferred for processes without final-state photons at the LO.





#### Processes with tagged photons

Pagani, Tsinikos, MZ arXiv:2106.02059

- The definition of a "photon" in the presence of EW corrections is not IR-safe (in a scheme with massless quarks/leptons)
- This is why democratic jets are usually employed
- In order to define photons as physical objects, a renormalisation scheme which takes into account fermion masses must be employed (only for the vertices related to tagged photons). Such a scheme exists:  $\alpha(0)$
- Renormalisation conditions define  $\alpha$  from the low-energy Thomson scattering. IR-poles differ from a high-energy scheme such as  $G_{\mu}$  or  $\alpha(m_Z)$
- The difference of IR poles accounts for the fact that real emissions with  $\gamma \rightarrow 2f$  splittings are not included
- Alternative: use fragmentation functions (more involved)
   Marco Zaro, ICS 2024
   46









#### NLO: Summary

- Precise predictions crucial for success of LHC programme
- They entail a lot of complexity: NLO is just the first bite!
- 10 years ago: NLO revolution. We have harvested many fruits
  - Automation: complexity hidden to the user!
  - NLO event generators ubiquitous in exp. analyses
  - Techniques proved successful also beyond QCD: automation of electroweak corrections (see backup slides for extra informations)





#### Next?

- Beyond NLO: NNLO is the new Holy Graal:
  - Several subtraction techniques are being studied at NNLO. They all work on paper, need for numeric implementation and testing
  - No general algorithm to compute 2-loop amplitudes, but huge progress (first results for massless 2→3 processes available)
  - In general, huge amount of complexity and of running time (~IM CPU hours for 2→2 with coloured FS)
- Is the NNLO revolution approaching?





#### Backup





LO

NLO

### MG5\_aMC Syntax (I)

- The syntax to generate NLO EW corrections is very similar to the one for QCD:
  - e.g.: ttbar@NLO EW: generate p p > t t~ [QED]
  - Since no orders are specified, it will take the LO contribution with the largest power of  $\alpha_s^2$ ,  $O(\alpha_s^2)$ , and generate NLO corrections with one extra power of  $\alpha$ ,  $O(\alpha_s^2 \alpha)$
  - If one wants to also generate NLO QCD corrections, the syntax is generate p p > t t~ [QED QCD] In this case NLO contributions with both one extra LO power of α and of α<sub>s</sub> will be generated NLO 1





#### MG5\_aMC Syntax (II)

- In the previous slide, the syntax would have been equivalent had we explicitly selected the dominant LO contribution.
  - This could be done by adding QED^2=0 QCD^2=4 to the generate command (note the squared-order constraints, applied at the amplitude level)
- Now, suppose you want to include also the first subleasing LO term (LO<sub>2</sub>), together with NLO QCD and EW corrections. The syntax is: generate p p > t t~ QED^2=2 QCD^2=4 [QCD]. While counterintuitive, this is interpreted as in the previous slide:
  - Generate LO contributions which satisfy the squared-order constraints  $(O(\alpha_s^2) \text{ and } O(\alpha_s \alpha))$
  - For the NLO corrections, add a power of  $\alpha_s$  on top of both. This will give  $(O(\alpha_s^3))$  and  $O(\alpha_s^2\alpha)$







#### MG5\_aMC Syntax (III)

- Can I use diagram-order constraints?
- While this will give inconsistencies when NLO EW corrections are computed, it may be useful e.g. in EFT studies
- If the user asks for diagram constraints together with NLO corrections, the code will issue a clear warning, asking the user to acknowledge what he/she wants to do
- More info on <u>http://amcatnlo.cern.ch/co.htm</u>

### Processes with tagged photons: how to

- In practice: a new model with both the HE renormalisation scheme  $(G_{\mu})$  and the  $\alpha(0)$  is available: loop\_qcd\_qed\_sm\_Gmu-a0
- Once loaded, tagged photons can be specified via the generate syntax: generate t t~ !a! [QED]
- Photons marked as tagged will not originate real emissions where  $\gamma \rightarrow 2f$ and the corresponding (local and integrated) FKS counterterms will not be included
- For each tagged photon, a term proportional to the difference between  $\alpha(0)$  and  $\alpha_{G\mu}$  is added (it has IR poles)
- The final result is rescaled by  $(\alpha(0)/\alpha_{G\mu})^{\text{NTagPhotons}}$
- Result presented for top-pair and single-top production + photons Pagani, Shao, Tsinikos, MZ 2106.02059
- Available in v3.3.0

Marco Zaro, ICS 2024



# Accessing the various coupling combinations

- The different coupling combinations to the cross section are evaluated in the same run
- Histograms can be booked for each of them in the analysis
- The coupling combination can be detected by using the orders\_tag\_plot variable integer orders\_tag\_plot
   common /corderstagplot/ orders\_tag\_plot
- It is typically computed as I00\*QED + I\*QCD (may change if more coupling types are around)
- In any case, the specific values are printed inside the log file

| <pre>INF0: orders_tag_plot is computed as:</pre> |     |              | + QCD * | 1  | + QED * | 100 |
|--------------------------------------------------|-----|--------------|---------|----|---------|-----|
| orders_tag_plot=                                 | 4   | for QCD,QED, | =       | 4, | 0,      |     |
| orders_tag_plot=                                 | 202 | for QCD,QED, | =       | 2, | 2,      |     |
| orders_tag_plot=                                 | 400 | for QCD,QED, | =       | 0, | 4,      |     |
| orders_tag_plot=                                 | 6   | for QCD,QED, | =       | 6, | 0,      |     |
| orders_tag_plot=                                 | 204 | for QCD,QED, | =       | 4, | 2,      |     |
| orders_tag_plot=                                 | 402 | for QCD,QED, | =       | 2, | 4,      |     |





< i n i + m ....+ >



-----

## Accessing the various coupling combinations in LHE events

- The same coupling structure can be accessed inside the LHE event file (when PS-matching is possible)
- Weights are stored in the same format as the scale/PDF variations

| <initrwgt></initrwgt>                                                                                                                     |                                    |                                   | <event></event>                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------|
| <pre><weightgroup combine="envelope" name="scale_variation&lt;/pre&gt;&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;0 0"></weightgroup></pre> | 5 0 0.15776264E+00 0.21383348      |                                   |                                    |
| <weight id="1001"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.10000E+01 muF=0.10000E+01 | -5 -1 0 0 0 501 0.0                |
| <weight id="1002"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.20000E+01 muF=0.10000E+01 | 21 -1 0 0 501 502 0.0              |
| <weight id="1003"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.50000E+00 muF=0.10000E+01 | -6 1 1 2 0 5024                    |
| <weight id="1004"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.10000E+01 muF=0.20000E+01 | 24 1 1 2 0 0 0.                    |
| <weight id="1005"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.20000E+01 muF=0.20000E+01 | 23 1 1 2 0 03                      |
| <weight id="1006"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.50000E+00 muF=0.20000E+01 | #aMCatNLO 1 0 0 1 2 0.91081533E-   |
| <weight id="1007"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.10000E+01 muF=0.50000E+00 | 0.0000000E+00                      |
| <weight id="1008"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.20000E+01 muF=0.50000E+00 | <rwgt></rwgt>                      |
| <weight id="1009"> tag=</weight>                                                                                                          | 0 dyn=                             | 0 muR=0.50000E+00 muF=0.50000E+00 | <wgt id="1001"> 0.15776E+00 </wgt> |
|                                                                                                                                           |                                    |                                   | <wgt id="1002"> 0.15496E+00 </wgt> |
| <pre><weightgroup combine="envelope" name="scale_variation&lt;/pre&gt;&lt;/td&gt;&lt;td&gt;4&lt;/td&gt;&lt;td&gt;0"></weightgroup></pre>  | <wgt id="1003"> 0.15846E+00 </wgt> |                                   |                                    |
| <weight id="1010"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.10000E+01 muF=0.10000E+01 | <wgt id="1004"> 0.16498E+00 </wgt> |
| <weight id="1011"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.20000E+01 muF=0.10000E+01 | <wgt id="1005"> 0.16195E+00 </wgt> |
| <weight id="1012"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.50000E+00 muF=0.10000E+01 | <wgt id="1006"> 0.16585E+00 </wgt> |
| <weight id="1013"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.10000E+01 muF=0.20000E+01 | <wgt id="1007"> 0.14640E+00 </wgt> |
| <weight id="1014"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.20000E+01 muF=0.20000E+01 | <wgt id="1008"> 0.14389E+00 </wgt> |
| <weight id="1015"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.50000E+00 muF=0.20000E+01 | <wgt id="1009"> 0.14693E+00 </wgt> |
| <weight id="1016"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.10000E+01 muF=0.50000E+00 | <wgt id="1010"> 0.13388E+00 </wgt> |
| <weight id="1017"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.20000E+01 muF=0.50000E+00 | <wgt id="1011"> 0.12227E+00 </wgt> |
| <weight id="1018"> tag=</weight>                                                                                                          | 40200 dyn=                         | 0 muR=0.50000E+00 muF=0.50000E+00 | <wgt id="1012"> 0.14798E+00 </wgt> |
|                                                                                                                                           |                                    |                                   | <wgt id="1013"> 0.13946E+00 </wgt> |
| <pre><weightgroup combine="envelope" name="scale_variation&lt;/pre&gt;&lt;/td&gt;&lt;td&gt;4&lt;/td&gt;&lt;td&gt;0"></weightgroup></pre>  | <wgt id="1014"> 0.12736E+00 </wgt> |                                   |                                    |
| <weight id="1019"> tag=</weight>                                                                                                          | 40202 dyn=                         | 0 muR=0.10000E+01 muF=0.10000E+01 | <wgt id="1015"> 0.15414E+00 </wgt> |
| <b></b>                                                                                                                                   |                                    |                                   | •                                  |
|                                                                                                                                           |                                    |                                   |                                    |



## Accessing the various c

- In either case, having all the couplings available from the same run makes them all statisticallycorrelated
- It is specially useful in the context of EFT studies, where different admixtures of newphysics can be morphed starting from the event weights
- Careful when matching to PS! If the statistical distribution of colour-flows is very different from one coupling combination to another (e.g. EFT vs SM), morphing could be dangerous!



