NLO: How to?

IWATE COLLUDER SCHOOL

26 FEBRUARY - 2 MARCH, 2024

Appi highland, Iwate, Japan

Marco Zaro *marco.zaro@mi.infn.it*

Introduction: Why do we need $N^{(k)}$ LO?

why? why? W N $)$? why? why?

Discoveries at hadron colliders

Discoveries at hadron colliders

Peak $H \rightarrow \gamma \gamma$

Background directly measured from **data**. Theory needed only for parameter extraction

Marco Zaro, ICS 2024 3

Discoveries at hadron colliders

Peak $H \rightarrow \gamma \gamma$

Shape $ZH \rightarrow l^+l^- + inv.$

HARD

Background directly measured from **data**. Theory needed only for parameter extraction

Background **SHAPE** needed. Flexible MC for both signal and background validated and tuned to data

 $L = 2.4$ fb

High S/B
Electrow

 0.8

NN Output

 0.6

Discoveries at hadron colliders

Shape

 $ZH \rightarrow l^+l^- + inv.$

Peak $H \rightarrow \gamma \gamma$

HARD

VERY HARD

 Ω

-0.2

Rate

 $H \rightarrow W^+ W^-$

CDF Run II Preliminary

10²

 $10⁷$

 10^{-2}

-1

 -0.8

 $\bar{\Xi}$ HWW ME+NN $\,$ M_H = 160 [GeV/c 2]

Background directly measured from **data**. Theory needed only for parameter extraction

Background **SHAPE** needed. Flexible MC for both signal and background validated and tuned to data

Relies on prediction for both **shape** and **normalization**. Complicated interplay of best

 0.2

 0.4

simulations and data

ATLAS Preliminary

 \sqrt{s} = 7, 8 TeV

Reference

TLAS-CONF-2013-04

TLAS-CONF-2013-06

1308.184

NTLAS-CONF-2013-04

TLAS-CONF-2013-04

ATLAS-CONF-2013-062

TLAS-CONF-2013-089

1208 4688

ATLAS-CONF-2013-026

ATLAS-CONF-2014-00

11 LAS-CONF-2012-144

 1211 1167

TI AS.CONF.2012.152

TLAS-CONF-2012-14

TLAS-CONF-2013-06

1308.1841
TLAS-CONF-2013-06

TLAS-CONF-2013-06

TLAS-CONF-2013-007

1208.4305, 1209.2102

1403.4853

1403.4853 1308.263

TLAS.CONE-2013-037 TLAS-CONF-2013-024 TLAS-CONF-2013-06

3"CONT-20
1403.5222
1403.5222

1403.5294

1403.5294

TLAS-CONF-2013-028

1402.7029
1403.5294, 1402.7029

TLAS-CONF-2013-093

TLAS-CONF-2013-069

TI AS-CONF-2013-05

TLAS-CONF-2013-058

1212.1272
1212.1272
TLAS-CONF-2012-140

TLAS-CONF-2013-036

TLAS-CONF-2013-036

TLAS-CONF-2013-09

TLAS-CONF-2013-007

1210.4826

TLAS-CONF-2013-051

TLAS-CONF-2012-147

1204.021 TLAS-CONF-2013-092

1308,2631

 $\int \int dt = (4.6 - 22.9)$ fb⁻¹

 $m(\tilde{k}^0)$ < 200.6eV m(\tilde{k}^{\pm})=0.5(m(\tilde{k}^0)+m(

 $m(\tilde{x}^0) = m(\tilde{h}) - m(W) - 50$ GeV, $m(\tilde{h}) < m(\tilde{k})$

 $m(\zeta^2) = m(\zeta_1) \cdot m(W) \cdot 50 \text{ GeV}, m(\zeta_1) < \text{cm}$
 $m(\zeta^2) = 1 \text{ GeV}$
 $m(\zeta^2) \cdot 200 \text{ GeV}, m(\zeta^2) \cdot m(\zeta^2) = 5 \text{ GeV}$
 $m(\zeta^2) = 0 \text{ GeV}$
 $m(\zeta^2) = 0 \text{ GeV}$
 $m(\zeta^2) \cdot 550 \text{ GeV}$
 $m(\zeta^2) > 150 \text{ GeV}$
 $m(\zeta^2) > 200 \text{ GeV$

 $m(\tilde{x}_1^0)$ =0 GeV, $m(\tilde{r}, \tilde{v})$ =0.5 $(m(\tilde{x}_1^{\pm}) + m(\tilde{x}_1^0))$ $n(\tilde{X}_2^0), m(\tilde{X}_1^0) = 0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{X}_1^{\pm}) + m(\tilde{X}_1^0))$

 $m(\tilde{X}_1^{\pm}) = m(\tilde{X}_2^0)$, $m(\tilde{X}_1^0) = 0$, sleptons decor

 $m(\tilde{X}_1^{\pm}) - m(\tilde{X}_1^0) = 160$ MeV. $\tau(\tilde{X}_1^{\pm}) = 0.2$

 $m(\tilde{X}_1^{\pm}) = m(\tilde{X}_2^0)$, $m(\tilde{X}_1^0) = 0$, sleptons decoup

 1.7 TeV $m(\tilde{q}) = m(\tilde{g})$

any m(ą̃

 $m(\tilde{\mathcal{K}}_1^0)=0$ GeV

 $m(\tilde{k}^0)$ = 0 GeV

 $m(\tilde{Y}_1^0) = 0$ Ge¹

 $tan\beta > 18$

 $m(\bar{Y}_1^0) > 50 C$

 $m(\tilde{X}_1^0)$ <600 Ge

 $m(\tilde{X}_1^0)$ <350 Ge

 $m(\tilde{X}_1^0)$ <400 GeV $m(\tilde{x}_1^0)$ <300 GeV

 $m(\tilde{X}_1^0)$ <90 Ge)

 $m(\tilde{x}_1^{\pm})=2 m(\tilde{x}_1^0)$
m(\tilde{x}_1^0)=55 GeV

 $m(\tilde{\mathcal{K}}^0_1)$ =0 GeV $m(\tilde{k}_1^0)$ =0 GeV, $m(\tilde{\ell}, \tilde{\nu})$ =0.5(m(\tilde{k}_1^{\pm})+m($\tilde{\ell}$

0.4<r (\bar{X}_1^0) <2 ns
1.5 <c τ <156 mm, BR(μ)

 λ'_{311} =0.10, λ_{132} =0.05
 λ'_{311} =0.10, $\lambda_{1(2)33}$ =0.05
m(*q*)=m(*g*), *c*r_{LSP}<1 m

 $m(\tilde{\chi}_1^0)$ >300 GeV, λ_{121} >0

m(ł̃^o)>80 GeV, *λ*₁₃₃>0
BR(*t*)=BR(*b*)=BR(*c*)=0⁶

incl. limit from 1110.2693

 $m(\gamma)$ <80 GeV, limit of<687 GeV for Dr

Mass scale [TeV]

New physics?

- No NP has been discovered yet
- Either there is no NP, or it is hiding very well
- If it is there, it will be a 'Hard' or 'very Hard' discovery
	- Need for accurate predictions for signal and background

Cross-section measurements

- The discovery of the Higgs boson is an emblematic example of the need for precision
- Large perturbative corrections for the dominant channel (gluon fusion)
- Without higher-order corrections, measured signal strength \sim 3 $*$ SM

Marco Zaro, ICS 2024

Anastasiou et al, arXiv:1602.00695

How to compute a cross-section

Marco Zaro, ICS 2024 6

 $\hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

parameter

$$
\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots
$$

Remember:

\n
$$
\alpha_s = \alpha_s(\mu_R) \qquad \sigma_i = \sigma_i(\mu_R, \mu_F)
$$
\n**Coupling and cross section depend on *unphysical* scales**

$\hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

parameter

$$
\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots
$$

Remember: Coupling and cross section depend on *unphysical* scales $\alpha_s = \alpha_s(\mu_R)$ $\sigma_i = \sigma_i(\mu_R, \mu_F)$

$\hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

$$
\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots
$$
\n

LO	NLO	
Q	Remember:	
Q	Remember:	
Q	Genember:	
Q	Gr	Eq
Equation of	Gr	Eq

$\hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

$\hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion

- The inclusion of higher orders improves the reliability of a given computation
	- More reliable description of total rates and shapes
	- Residual uncertainties related to the arbitrary scales in the process decrease
	- The computational complexity grows exponentially
	- NLO is mandatory for LHC physics!

- In order to describe data, LO predictions must be rescaled to match the cross section including higher orders (typically NNLO)
- →More predictive power • NLO predictions are generally not rescaled
	- NLO effects can be important even if merged samples are used at LO

Marco Zaro, ICS 2024

In these lectures:

- How to compute effectively a NLO cross section?
	- How to deal with infrared divergences?
	- How to compute loops?
	- How about EW corrections?

Join at slido.com #141 171

NLO (pre)history

- NLO evolution:
	- e.g. pp→W+*n* jets

NLO (pre)history

- NLO evolution:
	- e.g. pp→W+*n* jets

NLO (pre)history

- NLO evolution:
	- e.g. pp→W+*n* jets

NLO revolution

- Amazing development of computational techniques to tackle *any* process at NLO
	- Local subtraction
- Computation of loop MEs
	- Tensor reduction
	- Generalized unitarity
	- Integrand reduction

Frixione, Kunszt, Signer, hep-ph/9512328 Catani, Seymour, hep-ph/9605323

Passarino, Veltman,1979 Denner, Dittmaier, hep-ph/509141 Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + … Ellis, Giele, Kunszt, arXiv:0708.2398 + Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007 Del Aguila, Pittau, hep-ph/0404120 Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710

The NNLO revolution is happening now!

Adapted from G. Zanderighi @LHCP23

$$
\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots
$$

- NLO is the first order where the scale dependence in a_s and PDFs is compensated by loop corrections
	- First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond

$$
\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \dots
$$

- NLO is the first order where the scale dependence in a_s and PDFs is compensated by loop corrections
	- First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond

- NLO is the first order where the scale dependence in a_s and PDFs is compensated by loop corrections
	- First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond

- NLO is the first order where the scale dependence in a_s and PDFs is compensated by loop corrections
	- First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond

- NLO is the first order where the scale dependence in a_s and PDFs is compensated by loop corrections
	- First reliable predictions for rates and uncertainties
- Better description of final state (inclusion of extra radiation)
- Opening of new partonic channels from real emissions
- Learning NLO technicalities will set the basis for us (you!) to tackle NNLO or beyond

NLO: how to?

• Three ingredients need to be computed at NLO

$$
\sigma_{NLO} = \int_{n} \alpha_{s}^{b} d\sigma_{0} + \int_{n} \alpha_{s}^{b+1} d\sigma_{V} + \int_{n+1} \alpha_{s}^{b+1} d\sigma_{R}
$$

Born
cross section
corrections corrections

• Remember: virtual and reals are not separately finite, but their sum is (KLN theorem). Divergences have to be subtracted before numerical integration. We will shortly see how

Infrared divergences

Branching

$$
\int_{n+1} \alpha_s^{b+1} d\sigma_R
$$

- When the integral over the phasespace of the gluon is performed, one can have $(p_q + p_g)^2 = 0$
- Since $(p_q+p_g)^2=2E_qE_g(1-\cos\theta)$ it happens when the gluon is soft $(E_g=0)$ or collinear to the quark $(\theta=0)$
- In both cases, the propagator leads to a divergent cross section

Singularities *3.2.1 Final and initial-state divergences* $\sum_{i=1}^n$ we wrote the universal form $\sum_{i=1}^n$ of a $\sum_{i=1}^n$ of a software into a sof *3.2.1 Final and initial-state divergences* $\sum_{i=1}^n$ we wrote the splitting $\sum_{i=1}^n$

• Let us rewrite the branching of a gluon from a quark as

 $\sigma_{h+g} \simeq \sigma_h$

 σ_{h}) \rightarrow $\sigma_{h+g} \simeq \sigma$

zp

zp

 θ

θ

Where k_t is the transverse momentum of the gluon $k_t = E \sin\theta$. It diverges in the soft $(z\rightarrow 1)$ and collinear $(k_t \rightarrow 0)$ region *E = (1***−***z)p* π $1-z$ k_t^2 It diverges in the soft ($z \rightarrow 1$) and collinear ($k \rightarrow 0$) region ic diverges in the sole $(x - 1)$ and collinear $(kt - 20)$ region *E = (1***−***z)p* \mathbf{r} $1 \overline{k}$ It diverges in the soft $(z=1)$ and collinear $(k=0)$ region it diverges in the soit $(z - 1)$ and collinear $(k_t - v)$ region

 $\alpha_{\rm s}C_F$

 $\alpha_{\rm s}C$

 dz

 \overline{d}

 dk_t^2

, (a) and (a) \sim (a) \sim (a) \sim (a) \sim

 dk

• These singularities cancel with the virtual contribution, which comes from the integration of the loop momentum \bullet These singularities cancel with the virtual contribution which relationships corrections of the correction of the correctio

$$
\sigma_h
$$

• The cancelation happens if we cannot distinguish between the case of no branching, and that of a soft/collinear branching Now let us examine what happens for initial-state splitting, where the hard process occurs *after* the case of ho branding, and that or a solutionine Now let us examine what happens for initial-state splitting, where the hard process occurs *after* the case of hold randmig, and that or a solutioning

p

p

Cancellation of divergences

- The KLN theorem tells us that divergences from the virtual and real emission cancel in the sum *if observables are insensitive to soft and collinear branchings* (IR-safety)
- When doing an analytic computation in dimensional regularisation, divergences appear as poles in the regularisation parameter ε
- In the real emissions, poles appear *after* the phase space integration in *d* dimension

Infrared safety

- In order to have meaningful predictions in fixed-order perturbation theory, observables must be IR-safe, *i.e.* not sensitive to the emission of soft or collinear partons.
- In particular, if an observable depends on the momentum p_i , it must not be sensitive on the branching $p_i \rightarrow p_j + p_k$, where either *pj* is soft or *pj* and *pk* are collinear
- For example
	- The number of gluons in an event
	- The number of jets with $p_T > p_T^{min}$
	- The hardest parton in an event
	- \bullet The hardest jet

Infrared safety

- In order to have meaningful predictions in fixed-order perturbation theory, observables must be IR-safe, *i.e.* not sensitive to the emission of soft or collinear partons.
- In particular, if an observable depends on the momentum p_i , it must not be sensitive on the branching $p_i \rightarrow p_j + p_k$, where either *pj* is soft or *pj* and *pk* are collinear
- For example
	- The number of gluons in an event
	- The number of jets with $p_T > p_T^{min}$
	- The hardest parton in an event
	- \bullet The hardest jet

Join at slido.com

Infrared safety

- In order to have meaningful predictions in fixed-order perturbation theory, observables must be IR-safe, *i.e.* not sensitive to the emission of soft or collinear partons.
- In particular, if an observable depends on the momentum p_i , it must not be sensitive on the branching $p_i \rightarrow p_j + p_k$, where either *pj* is soft or *pj* and *pk* are collinear
- For example
	- The number of gluons in an event is not IR-safe
	- The number of jets with $p_T > p_T^{min}$ is IR-safe
	- The hardest parton in an event is not IR-safe
	- The hardest jet is IR-safe

✅

❌

Join at slido.com

20

Phase space integration

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}
$$

contains $\int d^d l$

- For complicated processes the integrations have to be done via MonteCarlo techniques, in an integer number of dimensions
- Divergences have to be canceled explicitly
- Slicing/Subtraction methods have been developed to extract divergences from the phase-space integrals

Example

• Suppose that we can cast the phase space integral in the form

$$
\int_0^1 dx f(x) \quad \text{with} \quad f(x) = \frac{g(x)}{x} \quad \text{and } g(x) \text{ a regular function}
$$

• We introduce a regulator which renders the integral finite

$$
\int_0^1 dx x^{\varepsilon} f(x) = \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• The divergence will turn into a pole in *ε*. How can we extract the pole?

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• We introduce a small parameter $\delta \ll 1$:

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• We introduce a small parameter $\delta \ll 1$:

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
\simeq \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• We introduce a small parameter $\delta \ll 1$:

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
\simeq \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• We introduce a small parameter $\delta \ll 1$:

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
\simeq \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}
$$

$$
= \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} + \log \delta \right) g(0) + \int_\delta^1 dx \frac{g(x)}{x}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• We introduce a small parameter $\delta \ll 1$:

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
\simeq \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$

$$
= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}
$$

$$
= \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} + \log \delta \right) g(0) + \int_\delta^1 dx \frac{g(x)}{x}
$$

pole in *ε*

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• We introduce a small parameter $\delta \ll 1$:

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(x)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$
\n
$$
\approx \lim_{\varepsilon \to 0} \left(\int_0^\delta dx \frac{g(0)}{x^{1-\varepsilon}} + \int_\delta^1 dx \frac{g(x)}{x^{1-\varepsilon}} \right)
$$
\n
$$
= \lim_{\varepsilon \to 0} \frac{\delta^\varepsilon}{\varepsilon} g(0) + \int_\delta^1 dx \frac{g(x)}{x}
$$
\n
$$
= \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} \right) + \log \delta \right) g(0) + \left[\int_\delta^1 dx \frac{g(x)}{x} \right] \text{finite integral}
$$
\npole in

\n(can be computed numerically)

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left(\frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left(\frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)
$$

$$
= \lim_{\varepsilon \to 0} \int_0^1 dx \left(\frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left(\frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)
$$

$$
= \lim_{\varepsilon \to 0} \int_0^1 dx \left(\frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)
$$

$$
= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

• Add and subtract *g*(0)/*^x*

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left(\frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)
$$

$$
= \lim_{\varepsilon \to 0} \int_0^1 dx \left(\frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)
$$

$$
= \lim_{\varepsilon \to 0} \left[\frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x} \right]
$$

pole in *ε*

$$
\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}
$$

$$
\lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} = \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left(\frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right)
$$

$$
= \lim_{\varepsilon \to 0} \int_0^1 dx \left(\frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right)
$$

$$
= \lim_{\varepsilon \to 0} \left[\frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x} \right]
$$
finite integral
pole in ε (can be computed numerically)

Slicing vs Subtraction

• In both cases the pole is extracted and we end up with a finite remainder:

$$
g(0)\log\delta + \int_{\delta}^{1} dx \frac{g(x)}{x} \qquad \int_{0}^{1} dx \frac{g(x) - g(0)}{x}
$$

- Subtraction acts like a plus distribution
- Slicing works only for small δ : δ -independence of cross section and distributions must be proven; subtraction is exact
- Both methods have cancelations between large numbers. If for a given observable $\lim_{x\to 0} O(x) \neq O(0)$ or we choose a too small bin size, instabilities will arise (we cannot ask for an infinite resolution) \overrightarrow{x} : $\overrightarrow{0}$
- Subtraction is in general more flexible: good for automation

NLO with subtraction

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}
$$

• With the subtraction terms the expression becomes

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B}
$$

+
$$
\int d^4 \Phi_n \left(\mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right)_{\varepsilon \to 0}
$$

+
$$
\int d^4 \Phi_{n+1} (\mathcal{R} - \mathcal{C})
$$

• Terms in brackets are finite and can be integrated numerically in *d*=4 and independently one from another

NLO with subtraction

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}
$$

• With the subtraction terms the expression becomes

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B}
$$

+
$$
\int d^4 \Phi_n \left(\mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right)_{\varepsilon \to 0}
$$

+
$$
\int d^4 \Phi_{n+1} (\mathcal{R} - \mathcal{C})
$$

• Terms in brackets are finite and can be integrated numerically in *d*=4 and independently one from another

NLO with subtraction

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}
$$

• With the subtraction terms the expression becomes

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B}
$$

+
$$
\int d^4 \Phi_n \left(\mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right)_{\varepsilon \to 0}
$$

Ploes cancel from
+
$$
\int d^4 \Phi_{n+1} (\mathcal{R} - \mathcal{C})
$$
<sup>Integrand is finite in
4 dimension</sup>

• Terms in brackets are finite and can be integrated numerically in *d*=4 and independently one from another

The subtraction term

- The subtraction term *C* should be chosen such that:
	- It exactly matches the singular behaviour of *^R*
	- It can be integrated numerically in a convenient way
	- It can be integrated exactly in *d* dimension, leading to the soft and/or collinear poles in the dimensional regulator
- It is process independent (overall factor times Born) • QCD comes to help: structure of divergences is universal:

ij

The subtraction term

- The subtraction term *C* should be chosen such that:
	- It exactly matches the singular behaviour of *^R*
	- It can be integrated numerically in a convenient way
	- It can be integrated exactly in *d* dimension, leading to the soft and/or collinear poles in the dimensional regulator
	- It is process independent (overall factor times Born)
- QCD comes to help: structure of divergences is universal:

$$
(p+k)^2 = 2E_pE_k(1-\cos\theta_{pk})
$$
\nCollinear singularity:

\n
$$
\lim_{p \neq k} |M_{n+1}|^2 \simeq |M_n|^2 P^{AP}(z)
$$
\nSoft singularity:

\n
$$
\lim_{k \to 0} |M_{n+1}|^2 \simeq \sum_{ij} |M_n^{ij}|^2 \frac{p_ip_j}{p_ik \ p_jk}
$$
\nCS 2024

Two subtraction methods

Dipole subtraction

Catani, Seymour, hep-ph/9602277 & hep-ph/9605323

- Recoil taken by one parton \rightarrow *N*³ scaling
- Method evolves from cancelation of soft divergences
- Proven to work for simple and complicated processes
- Automated in MadDipole, AutoDipole, Sherpa, Helac-NLO, …

FKS subtraction

Frixione, Kunszt, Signer, hep-ph/9512328

- Recoil distributed among all particles \rightarrow *N*² scaling
- Method evolves from cancelation of collinear divergences
- Proven to work for simple and complicated processes
- Automated in MadGraph5_aMC@NLO and in the Powheg box/Powhel

FKS subtraction #1 Phase space partition

• Let us consider the real emission

$$
d\sigma_R = \left| M^{n+1} \right|^2 d\Phi_{n+1}
$$

• The matrix element |*Mn*+1| 2 diverges as

$$
|M^{n+1}| \sim \frac{1}{\xi_i^2} \frac{1}{1 - y_{ij}}
$$

$$
y_{ij} = \cos \theta_{ij}
$$

• Partition the phase space in order to have at most one soft and one collinear singularity

$$
d\sigma_R = \sum_{ij} S_{ij} |M^{n+1}|^2 d\Phi_{n+1}
$$

$$
S_{ij} \to 1 \text{ if } k_i \cdot k_j \to 0
$$

$$
S_{ij} \to 0 \text{ if } k_{m \neq i} \cdot k_{n \neq j} \to 0
$$

FKS subtraction #2 Plus prescriptions

• Use plus prescriptions in *yij* and *ξi* to subtract the divergences

$$
d\sigma_{\tilde{R}} = \sum_{ij} \left(\frac{1}{\xi_i}\right)_+ \left(\frac{1}{1 - y_{ij}}\right)_+ \xi_i (1 - y_{ij}) S_{ij} |M^{n+1}|^2 d\Phi_{n+1}
$$

• Plus prescriptions are defined as

$$
\int d\xi \left(\frac{1}{\xi}\right)_+ f(\xi) = \int d\xi \frac{f(\xi) - f(0)}{\xi} \qquad \int dy \left(\frac{1}{1 - y}\right)_+ g(y) = \int dy \frac{g(y) - g(1)}{1 - y}
$$

- Maximally three counterevents are needed
	- Soft counterevent (*ξi*→0)
	- Collinear counterevents (*yij*→1)
	- Soft-collinear counterevents (*ξi*→0 and *yij*→1)
- The counterevents will feature the *same* kinematics

 $\frac{1}{2}$ \mathcal{S}

 $\frac{\mu}{\epsilon}$

Kinematics of counterevents \mathcal{L} in omatice of counterparables, \mathcal{L} \blacksquare ϵ of counterent kinematic variables, considering a hard process ϵ σ on counter cronts section for σ

Real emission Subtraction term

- If *i* and *j* are on-shell in the event, for the counterevent the combined particle *i+j* must be on shell • If i and j are on-shell in the event, for the counterevent the $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ pair $\frac{1}{2}$ pair from a plain $\frac{1}{2}$ combined particle $i + i$ must be on shell at distinguishments are alleged and collinear ϵ pair ϵ or ϵ observables
- $i+j$ can be put on shell only be reshuffling the momenta of the other particles related virtual correction
	- It can happen that event and counterevent end up in different histogram bins and *p p p p p*
		- Us σ_h afe observables and don't ask for infinite σ_h) lusing! σ_h afe observables and don't ask for infinit
		- Us σ_h at so bservables and don't ask for infinition
Still, see precautions do not eliminate the prob ا
س 1 − z $\sigma_{\sf h}$) lusion! \rightarrow

An example in 4-lepton production

The NLO result shows the typical peak-dip structure that hampers fixed-order computation

Can we generate unweighted events at NLO?

- Another consequence of the kinematic mismatch is that we cannot generate events at NLO
- *ⁿ*+1-body contribution and *n*-body contribution are not bounded from above \rightarrow unweighting not possible
- Further ambiguity on which kinematics to use for the unweighted events

Can we generate unweighted events at NLO?

- Another consequence of the kinematic mismatch is that we cannot generate events at NLO
- *ⁿ*+1-body contribution and *n*-body contribution are not bounded from above \rightarrow unweighting not possible
- Further ambiguity on which kinematics to use for the unweighted events

More tomorrow

Filling histograms on-the-fly

$$
\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B}
$$

+
$$
\int d^4 \Phi_n \left(\mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right)_{\varepsilon \to 0}
$$

+
$$
\int d^4 \Phi_{n+1} (\mathcal{R} - \mathcal{C})
$$

- In practice, two set of momenta are generated during the MC integration
	- One (or more) *n*-body set(s), for Born, virtuals and counterterms
	- One *n*+1-body set, for the real emission
- The various terms are computed. Cuts are applied on the corresponding momenta and histograms are filled with the weight and kinematics of each term

Instabilities at fixed order \blacksquare \blacktriangledown \blacktriangle

Besides the mis-binning problem, the kinematics mismatch can lead to odd behaviours of certain observables, in particular when some constraint coming $\frac{2}{3}$ from the *n*-body kinematics is relaxed in the $n+1$ -body one σ per bin [pb]

Subtracting IR divergences: Summary

- Virtual and real matrix element are not finite, but their sum is. Subtraction methods can be used to extract divergences for real-emission matrix elements and cancel explicitly the poles from the virtuals
- Event and counterevents have different kinematics. Unweighting is not possible, we need to fill plots on-the-fly with weighted events
- For plots, only IR-safe observable with finite resolution must be used!

- Suppose we have a code for $pp \rightarrow t\bar{t}$ @NLO. Are all the following (IR-safe) variables described at NLO?
	- \bullet top p_T
	- tt pair p_T
	- tt pair invariant mass
	- •jet (extra parton) *pT*
	- \bullet tt azimuthal distance

• Suppose we have a code for $pp \rightarrow t\bar{t}$ @NLO. Are all the following (IR-safe) variables described at NLO?

YES

- \bullet top p_T
- tt pair p_T
- tt pair invariant mass
- •jet (extra parton) *pT*
- \bullet tt azimuthal distance

- Suppose we have a code for $pp \rightarrow t\bar{t}$ @NLO. Are all the following (IR-safe) variables described at NLO?
	- \bullet top p_T
	- tt pair p_T
	- tt pair invariant mass
	- •jet (extra parton) *pT*
	- \bullet tt azimuthal distance

- Suppose we have a code for $pp \rightarrow t\bar{t}$ @NLO. Are all the following (IR-safe) variables described at NLO?
	- \bullet top p_T
	- tt pair p_T
	- tt pair invariant mass
	- •jet (extra parton) *pT*
	- \bullet tt azimuthal distance

YES NO YES

- Suppose we have a code for $pp \rightarrow t\bar{t}$ @NLO. Are all the following (IR-safe) variables described at NLO?
	- \bullet top p_T
	- tt pair p_T
	- tt pair invariant mass
	- •jet (extra parton) *pT*
	- \bullet tt azimuthal distance

YES NO YES NO

- Suppose we have a code for $pp \rightarrow t\bar{t}$ @NLO. Are all the following (IR-safe) variables described at NLO?
	- \bullet top p_T
	- tt pair p_T
	- tt pair invariant mass
	- •jet (extra parton) *pT*
	- \bullet tt azimuthal distance

YES NO YES NO NO

From QCD to EW corrections

a brief overview

• QCD corrections generally improve precision of computations (shrink the second of 30 40 50 NLOQCD+EW 0.8 1 **5**Facte 5FS **SCI LES A COLOR FINCE COLOR FINCE COLOR FINCE COLOR FINCE COLOR** 0.8 1 NLOQCD+EW NLO_{QCD}

dσ/dp

10−⁵

1.2

 10^{-4}

 10^{-3}

 $10 - 2$

 $\ddot{}$

j, LHC13 $|m(\ell^+\ell^-)-m_Z| < 10 \text{ GeV}$

T [pb/GeV]

- EW corrections necessary to improve accuracy of predictions, specially in the tails of distributions (Sudakov enhancement) **ptrev** 0 50 100 150 200 250 300 350 400 450 $\frac{1}{\sqrt{2}}$ is the layout of the predictions $\frac{1}{\sqrt{2}}$ 10119
- EW corrections are crucial at lepton colliders
- **EW and complete-NLO corrections** automated! • In some cases, EW corrections do not behave d σ/d F^h NLO_{QCD+EW} NLOodp LO **1**0−2 ℓ et_{i,} Gio+3 m(住门) 5 30 GeV Sherpa+Openloops: 1412.54959; Sherpa+Recola:9704.0578;3 MG5_aMC: 1804.10047
- as expected: can give effects as large as QCD! 14€

Why bothering?

total unc. Scale no. **Elle PDF** unc.

' ''−∽QCD+EW NLO_{QCD} – $\overline{10}$ –

d σ/dp

NLOQCD+EW

NLO_{QCD}

T [pb/GeV]

 $p_T(j_{\ell_1})$ [GeV] turbative pattern as for the pattern as for the diagrams in the diagrams in the diagrams in the diagrams in the

Sudakov enhancement

Denner, Pozzorini, hep-ph/0010201 & hep-ph/0104127 Pagani, MZ, arXiv:2110.03714

- EW bosons are massive: a real W/Z/Higgs emission is detectable (at least in principle)
- Radiation of W/Z/Higgs bosons is in general not included in EW corrections, which remain finite
- When the process scale Q is large, $Q \gg M \sim m_W, m_Z, m_H$ the would-be IR divergence associated to the heavy boson shows up with double and single log(Q/M)
- In the regime where all invariants are $\gg M$, these logs are universal, and exponentiate at all orders (resummation possible)
- Sudakov approximation is excellent at high-energy (only a constant part is missing)

Large EW corrections: not only Sudakov logs

- Despite the naive estimate *α*~*α^s* ², there are cases when EW corrections comparable to NLO QCD or larger. It happens when:
	- Large scales are probed (VBS) \mathbf{r} 1.2975(15) 1.2975(15) 1.2975(15) feature of all VBS channels, see also Denner et al, 1904.00882, 2009.00411
	- Power counting is altered (4 top: y_t vs *α*)
- New production mechanisms, different than those at the "dominant" LO, enter (ttW, bbH) and the cross sections are expressed in $\mathsf{F}(\mathsf{H}^{\mathsf{H}})$ ttW: Frederix et al, 1711.02116 For the production incentations, unici che than the set-up of \mathcal{L}_{max}

Anatomy of EW corrections: EW corrections vs EW effects

- A general process has more contributions at LO, NLO, ...
- **Example: top pair**

- The LO is often identified with the contribution with most *α^s*
- At NLO the first two contributions are identified with the NLO QCD and NLO EW corrections
- This structures induces mixed QCD-EW effects at NLO: $NLO_i = LO_{i-1} \otimes EW + LO_i \otimes QCD$

Marco Zaro, ICS 2024

Multi-coupling expansion

LO) (NLO) (NNLO) (NNNLO Single coupling $\hat{\sigma} = \alpha_s^b \sigma_0 + \alpha_s^{b+1} \sigma_1 + \alpha_s^{b+2} \sigma_2 + \alpha_s^{b+3} \sigma_3 + \ldots$

Multi-coupling

Multi-coupling expansion

Steps towards the automation of EW corrections

- Apart for the (much) more complex book-keeping, automation of NLO EW corrections largely builds on techniques for NLO QCD (modulo bookkeeping)
- IR subtraction: techniques established for QCD corrections can be extended to EW ones
- Replace color factors with charges (*CF*→*qi* 2 , *CA*→0, *TF*→*NC,i qi* ²) Replace color-linked Borns with charge-links
- Loop amplitudes: one-loop techniques can be exploited for EW loops.
- UV/R2 counterterms for the EW interactions are needed
- Higher ranks appear, integrand-reduction may lead to unstable results Switch to other techniques (Tensor-integral reduction, Laurent-series expansion,…)
- Use scalar-integral libraries that support complex masses

EW renormalisation schemes in a nutshell

The renormalisation of *α* can be performed in different schemes:

- $\alpha(0)$: α is measured in the Thompson scattering, in the zero-momentum limit. Terms ~log(*Q*/*mf*) appear in the cross section, except for external photons. Fermion masses must be retained.
- $\alpha(M_Z)$: α is measured at the Z peak (e.g. at LEP). It removes the dependence on the fermion masses, which can be set to zero.
- *^Gμ* scheme: the Fermi constant is measured from the muon lifetime, then *^α* is extracted. W.r.t. the $\alpha(M_Z)$ scheme, also contributions of weak origin $(\Delta \rho)$ are resummed

The *Gμ* scheme is generally preferred for processes without final-state photons at the LO.

Processes with tagged photons

Pagani, Tsinikos, MZ arXiv:2106.02059

- The definition of a "photon" in the presence of EW corrections is not IR-safe (in a scheme with massless quarks/leptons)
- This is why democratic jets are usually employed
- In order to define photons as physical objects, a renormalisation scheme which takes into account fermion masses must be employed (only for the vertices related to tagged photons). Such a scheme exists: *α*(0)
- Renormalisation conditions define *^α* from the low-energy Thomson scattering. IR-poles differ from a high-energy scheme such as G_{μ} or $\alpha(m_Z)$
- The difference of IR poles accounts for the fact that real emissions with *γ*→2*f* splittings are not included
- Marco Zaro, ICS 2024 46 • Alternative: use fragmentation functions (more involved)

NLO: Summary

- Precise predictions crucial for success of LHC programme
- They entail a lot of complexity: NLO is just the first bite!
- 10 years ago: NLO revolution. We have harvested many fruits
	- Automation: complexity hidden to the user!
	- NLO event generators ubiquitous in exp. analyses
	- Techniques proved successful also beyond QCD: automation of electroweak corrections (see backup slides for extra informations)

Next?

- Beyond NLO: NNLO is the new Holy Graal:
	- Several subtraction techniques are being studied at NNLO. They all work on paper, need for numeric implementation and testing
	- No general algorithm to compute 2-loop amplitudes, but huge progress (first results for massless $2 \rightarrow 3$ processes available)
	- In general, huge amount of complexity and of running time (~IM CPU hours for $2\rightarrow 2$ with coloured FS)
- Is the NNLO revolution approaching?

Backup

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (3

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (3

2

2

LO

NLO

1

2 (3) (4

MG5 aMC Syntax (I)

- The syntax to generate NLO EW corrections is very similar to the one for QCD:
	- e.g.: ttbar@NLO EW: generate $p p > t$ t~ [QED]
	- Since no orders are specified, it will take the LO contribution with the largest power of α_s ², $\mathbf{O}(\alpha_s$ ²), and generate NLO corrections with one extra $\bm{\mathsf{power}}$ of α , $\bm{\mathsf{O}}(\alpha_s^2\alpha)$
	- If one wants to also generate NLO QCD corrections, the syntax is generate $p p > t$ t~ [QED QCD] In this case NLO contributions with both one extra power of *α* and of *α^s* will be generated 1 2 3 4 LO NLO

MG5 aMC Syntax (II)

- In the previous slide, the syntax would have been equivalent had we explicitly selected the dominant LO contribution.
	- This could be done by adding QED^2=0 QCD^2=4 to the generate command (note the squared-order constraints, applied at the amplitude level)
- Now, suppose you want to include also the first subleasing LO term $(LO₂)$, together with NLO QCD and EW corrections. The syntax is: generate $p p > t$ t~ QED^2=2 QCD^2=4 [QCD]. While counterintuitive, this is interpreted as in the previous slide:
	- Generate LO contributions which satisfy the squared-order constraints $(O(\alpha_s^2)$ and $O(\alpha_s\alpha))$
	- For the NLO corrections, add a power of *αs* on top of both. This will give $(O(\alpha_s^3)$ and $O(\alpha_s^2\alpha))$

MG5_aMC Syntax (III)

- Can I use diagram-order constraints?
- While this will give inconsistencies when NLO EW corrections are computed, it may be useful e.g. in EFT studies
- If the user asks for diagram constraints together with NLO corrections, the code will issue a clear warning, asking the user to acknowledge what he/she wants to do
- More info on<http://amcatnlo.cern.ch/co.htm>

Processes with tagged photons: how to

- In practice: a new model with both the HE renormalisation scheme (G_μ) and the $\alpha(0)$ is available: loop_qcd_qed_sm_Gmu-a0
- Once loaded, tagged photons can be specified via the generate syntax: generate t t~ !a! [QED]
- Photons marked as tagged will not originate real emissions where *γ*→2*^f* and the corresponding (local and integrated) FKS counterterms will not be included
- For each tagged photon, a term proportional to the difference between $\alpha(0)$ and α_{Gu} is added (it has IR poles)
- The final result is rescaled by $(\alpha(0)/\alpha_{G\mu})$ NTagPhotons
- Result presented for top-pair and single-top production + photons Pagani, Shao, Tsinikos, MZ 2106.02059
- Available in v3.3.0

Marco Zaro, ICS 2024 53

Accessing the various coupling combinations

- The different coupling combinations to the cross section are evaluated in the same run 1.6
- Histograms can be booked for each of them in the analysis
- The coupling combination can be detected by using the orders tag plot variable integer orders_tag_plot common **/**corderstagplot**/** orders_tag_plot
- It is typically computed as $100*QED + 1*QCD$ (may change if more coupling types are around)
- In any case, the specific values are printed inside the log file

 20

Accessing the various coupling combinations in LHE events

- The same coupling structure can be accessed inside the LHE event file (when PS-matching is possible)
- Weights are stored in the same format as the scale/PDF variations

Accessing the various coupling combinations

- In either case, having all the couplings available from the same run makes them all statisticallycorrelated
- It is specially useful in the context of EFT studies, where different admixtures of newphysics can be morphed starting from the event weights
- Careful when matching to PS! If the statistical distribution of colour-flows is very different from one coupling combination to another (e.g. EFT vs SM), morphing could be dangerous!

