Experiments at the International Linear Collider

Daniel Jeans (IPNS/KEK)

ICS2025@APPI

Dark Ages

Electro-weak transition

Electro-weak physics should contain imprint of physics at much higher energy

Electro-weak transition

Higgs potential changes shape

Higgs particle: excitation of Higgs field

different to all other fundamental particles not "matter", not "force", no spin

why did the transition happen?

how fast did it happen ?

did it cause the universe's anti-matter to disappear ?

Is the Higgs potential as we expect

is our current vacuum really stable ?

might the vacuum in our universe spontaneously decay ?

we've observed all particles of the **Standard Model**

...but they describe only a small fraction of our universe

To be honest, we understand very little !

Higgs decay branching fractions

as predicted in the **Standard Model**

Higgs couples to particles' mass

Higgs decay branching fractions

as predicted in the **Standard Model**

Higgs couples to particles' mass

is this really true?

new physics @ TeV-scale \rightarrow few % deviations

γγ

μμ

Deviations in Higgs couplings

11

Deviations in Higgs couplings from BSM physics

 \rightarrow different BSM models give different deviations ¹²

precision Higgs measurements \rightarrow fingerprints of deeper physics Insight through Accelerators. ~1% precision needed for ~TeV new physics $\sim 1\%$ precision needed for ~TeV new physics

"Higgs Factory" based on an electron – positron collider

→ high precision measurements of Higgs particle and other topics

Insight through Accelerators.

~1M Higgs bosons

proton - proton

protons are composite: quarks and gluons \rightarrow wide spectrum of q-q , q-g , g-g collision energies

debris from collision of remainder of protons

dominated by "strong force" QCD interactions

Insight through Accelerators

e+ e-

 $\bullet \longrightarrow \bullet \frown \bigcirc$

elementary particles: each collision has "fixed" energy

almost no "debris": clean events, easy to analyse

dominated by Electro-Weak interactions

what energy is needed ?

what about this process ?

hint: mass of H boson is 125 GeV

what energy is needed ?

why is this very difficult ?

hint: Higgs couples to particles' **mass** ²⁶

Number of Higgs bosons = cross-section * integrated luminosity = cross-section * running time * luminosity

need enough luminosity to get enough Higgs bosons in a reasonable time

350 fb = 350 x 10^{-15} x 10^{-24} cm² = 3.5 x 10^{-37} cm²

ILC luminosity: 1.35 x 10³⁴ cm⁻² s⁻¹

- \rightarrow 4.7 x 10⁻³ Higgs s⁻¹
- \rightarrow one Higgs every 3~4 minutes
- \rightarrow 150k per year (if running continuously)

(after a few years, plan to upgrade luminosity to increase this rate)

N * N * (repetition rate) * (enhancement factor) Luminosity ~ bunch size (vertical) * bunch size (horizontal)

Large N Large repetition rate ~ 6500 / s Small bunch size

~ 7 nm (vertical) ~ 500 nm (horizontal)

K 202

What is beam polarisation?

mostly positive helicity

mostly negative helicity

if highly relativistic:

mostly right-handed

mostly left-handed

In the electro-weak interactions, Left and Right-handed fermions are different particles

flipping the beam polarisations \rightarrow 4 different experiments!

why increase the energy ?

Insight through Accelerators

EK 202
Higgs production in electron-positron collisions

EK 2021

add ~500 & ~1000 GeV

Circular collider (electron-positron)

Energy loss by synchrotron radiation: power loss ~ E⁴ / (m⁴ r²) E: energy

m: particle mass r: ring radius reuse particles very efficient at lower beam energies

 \rightarrow practically limits the maximum beam energy \rightarrow difficult to increase energy in a ring

Electrical power ~ E^4

Electrical power ~ E

Linear Collider

Energy limited by tunnel length & accel. gradient \rightarrow "easy" to increase (reusing existing tunnel)

ILC technology

Key Technology: Super-Conducting Radio Frequency acceleration

accelerate electrons through 30~35+ million volts every meter

Super-Conducting cavities for ILC

Super-conductor \rightarrow dramatically reduce heating \rightarrow more efficient

Niobium : good superconductor

~7,800 for ILC

Superconducting Test Facility (STF)

cryomodule at FNAL, destined for LCLS-II @ SLAC

Experiments at ILC

two international groups developing detectors for ILC

design detectors with unprecedented precision → enable ILC program

challenging requirements

to maximise physics harvest

- \rightarrow efficiency, identification, resolution
- \rightarrow hadronic jet resolution
- \rightarrow angular coverage

technological advances

- \rightarrow new technologies
- \rightarrow low power, integrated electronics
- \rightarrow compact devices
- \rightarrow machine learning / AI
- → quantum sensors

Geant4 simulation in ILD detector

tracking detector

precise momentum of *charged* particles

d p_T / p_T ~ 3 x 10⁻⁵ p_T

electromagnetic calorimeter

reasonable precise measurement of electrons, positrons, photons

dE/E ~ 20% / √E

51

hadronic calorimeter

less precise measurement of charged and neutral hadron energies

dE/E ~ 50% / √E

52

what type of event ??

??

 $e^+e^- \rightarrow e^+e^-h$ [invisible h decay] @ 250 GeV

 $e^+e^- \rightarrow tth [tt \rightarrow 6q, h \rightarrow bb]$ @ 1000 GeV

H

Higgs-strahlung process is particularly powerful

Higgs can be selected by looking only at Z decay products we know initial e⁺e⁻ 4-momentum (at lepton collider) we precisely measure 4-momentum of Z → we can trivially extract 4-momentum of "H" select Higgs events with no decay mode bias (e.g. invisible Higgs)

count total number of produced Higgs events, and extract Higgs mass without looking at Higgs decay products

 \rightarrow not affected by e.g. unexpectedly weird Higgs decays

many processes will produce 1 or more W, Z, H

these usually (~70%) decay to $q\bar{q}$ \rightarrow shower \rightarrow hadronise \rightarrow jets

hadronic jet:

charged hadrons pions, kaons, protons ...

photons from pi0, eta, ... decays

neutral hadrons K⁰L, neutrons, ...

hadronic jet:

charged hadrons pions, kaons, protons ... ave. ~65% of energy photons from pi0, eta, ... decays ave. ~25% of energy neutral hadrons K^{0}_{L} , neutrons, ... ave. ~10% of energy

how should we measure jet energy ?

detector performance requirements

track momentum

impact parameter

transparent tracker

jet energy

cover all solid angle around collision

precision on Higgs boson couplings based on realistic simulation and analysis

ILC facility

unique e⁻ & e⁺ beams high intensity high energy high quality

→ potential for studies
beyond Higgs,
beyond particle
physics

new ideas welcome !

Green ILC

linear accelerator and **super-conducting technology** were chosen because they minimize energy loss

none the less, ILC operation requires 111 MW (at 250 GeV) assuming current energy mix: 320 kton CO₂ per year

- \rightarrow continue development of energy saving technologies for ILC
- \rightarrow use of waste energy (heat) by local industry
- \rightarrow encourage and prioritize renewable energy sources
- \rightarrow encourage local forestry industry: wooden construction

proposed Higgs factory projects

European Strategy in Particle Physics

process underway this year, conclude 2026

what will be the next large accelerator at CERN?

decision 2025 ?

ILC project

2005	2013	2020		~4 y	~9 y	>2	20 y
ILC Glo Desiç Effo	obal gn rt	Linear Collider Collab.	Internat'l. Develop. Team	ILC pre-	lab.	labora	tory
technical design	site-s de	specific sign		engineering design set up ILC lab	construction	operation	& upgrades
Strong consensus in HEP community for electron-positron Higgs factory (US, Europe, China, Jap						China, Japan,)	
			Several ILC is	Higgs Factory propos s most technologically de	sals eveloped option		
			Japanes whet	e government consid ther to host ILC in Jap	lering pan		
Insight t	hrough Accelerat	ors.					68

candidate ILC site

selected as candidate site by scientists from Japan and abroad

International linear collider 国際リニアコライダーを東北に Welcome to the ILC kitakami site!

@lwate_ilc @ichinoseki_ilc @Oshu_ILC @ILCsupporters @ilc_tsushin @LCNewsLine

we want --- if: !!

summary

Higgs particle presents a once-per-generation opportunity to look into our universe's beginnings, perhaps its destiny

(most) particle physicists agree it would be great to have a e+ e- "Higgs Factory" several such projects under consideration

ILC would be an ideal facility to enable this study of the Higgs it requires joint effort from the worldwide community: governments, local communities, industries, academia

ILC uses proven technologies developed around the world

Hosting ILC in Iwate/Japan/Asia will promote position at the forefront of science, technology, culture, and society through the 21st century

