ICS2025 Tutorial; requirements

- Laptop PC (with internet connection)
- Terminal (for shell operation)
- Basic knowledge of shell commands;
 e.g. pwd, mkdir, cd, cp, mv, rm, tar, less, more, ...
- python 3.7 (or higher)
- gfortran/gcc 4.6 or higher
- matplotlib (or ROOT) [for MadAnalysis5]
- Mathematica [only for those who want to learn FeynRules]

MadGraph5_aMC@NLO; start-up

- Download MG5_aMC_vX.Y.Z.tar.gz (v2.9.22)
 from the MadGraph5_aMC@NLO launchpad: https://launchpad.net/mg5amcnlo
- At your working directory in a terminal, untar:
 \$ tar zxvf MG5_aMC_X.Y.Z.tar.gz
- Go into the MG5aMC directory:
 \$ cd MG5_aMC_vX_Y_Z/
- Start MG5aMC:\$./bin/mg5 aMC

MG5aMC; first try

- After the MG5aMC logo, your terminal should have MG5_aMC> prompt. Please try:
 - MG5_aMC> generate p p > t t~
 - MG5_aMC> output
 - MG5_aMC> launch
- Please ignore a few questions from MG5aMC by just pushing the "Enter" key, then after a few minutes, you should get in your browser (.../MG5_aMC_vX_Y_Z/PROC_sm_0/crossx.html) like

Now you are ready to do some simulations for the LHC and the ILC!

MG5aMC; install other tools

Please also try to install other tools as

- For plots:
 MG5_aMC> install MadAnalysis5
- For parton-shower and hadronization:
 MG5_aMC> install pythia8

MG5aMC; main 4 steps

- MG5_aMC> import model MODEL (e.g. 2HDM)
- MG5_aMC> generate PROCESS (e.g. p p > t t~)
- MG5_aMC> output (my_process)
- MG5_aMC> launch
- MG5_aMC> launch
- MG5_aMC> ...

MG5aMC; tips

- Use auto-completion by "tab (tab)".
- MG5_aMC> help
- MG5_aMC> help COMMAND (e.g. generate)
- MG5_aMC> tutorial

that aims at providing all M phenomenology, such as generation of hard events ors, and the use of a variety and analysis. Processes can er-defined Lagrangian, an the it support this kind of are QCD and EW corrections e tree- and one-loop-level

Answers

sion of both MadGraph5 and lines of development of family. It therefore rsions and all the beta

the code is: J. Alwall et al. evel and next-to-leading neir matching to parton hep-ph]. In addition to that, sions and/or of NLO (eg NLO EW) require the nation of next-to-leading 1804.10017 [hep-ph]. A more nd here: http://amcatnlo.

https://launchpad.net/mg5amcnlo

Appouncemente

EX-1.1; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5_aMC> generate p p > t t~

Questions?

- Which partonic subprocesses contribute?
- How the Feynman diagrams look like?

MG5_aMC> display diagrams

To Remember

$$\sum_{a,b} \int dx_1 dx_2 d\Phi_{\mathrm{FS}} \, f_a(x_1,\mu_F) f_b(x_2,\mu_F) \, \hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$$
 Phase-space Parton density Parton-level cross integral functions section

- PDF: content of the proton
 - Define the physics/processes that will dominate on your accelerator
- LO: good for shape
- NLO/NNLO: Reduce scale uncertainty
- Computation are inclusive (+ any jet) due to renormalization/factorization scale

EX-1.2; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5_aMC> generate p p > t t~

Questions?

- How much the cross sections are at 7TeV (= Run-I),
 I3TeV (= Run-2), and I3.6TeV (= Run-3) at the LHC?
- How much the cross section is if $m_t = 170 \text{GeV}$?

```
MG5_aMC> output my_toppair (name it as you like) MG5_aMC> open index.html (check the diagrams) MG5_aMC> launch (modify run_card/param_card)
```

→ alternative way in the next page

EX-1.2; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5 aMC> generate p p > t t~

Questions?

- How much the cross sections are at 7TeV (= Run-I), I3TeV (= Run-2), and I3.6TeV (= Run-3) at the LHC?
- How much the cross section is if $m_t = 170 \text{GeV}$?

MG5_aMC> output my_toppair (name it as you like)

MG5_aMC> open index.html (check the diagrams)

MG5 aMC> launch -n run l

> set ebeam 7000/2

> set mt 170

One can "set" the parameters without editing the cards.

I useful for scripting

EX-1.3; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5_aMC> generate p p > t t~

Questions?

- Are b-quarks included in the initial state? (check the diagrams)
- How can we include them? and How much do they contribute to the cross section?

```
MG5_aMC> display multiparticles
MG5_aMC> define p = p b b~
MG5_aMC> generate ...; output ...; launch
```

→ better solution in the next page

EX-1.3; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5_aMC> generate p p > t t~

Questions?

- Are b-quarks included in the initial state? (check the diagrams)
- How can we include them? and How much do they contribute to the cross section?

```
MG5_aMC> import model sm-no_b_mass (SM w/ m<sub>b</sub>=0) MG5_aMC> display multiparticles MG5_aMC> generate ...; output ...; launch
```

4-flavor sheme → 5-flavor sheme

EX-1.4; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5_aMC> generate p p > t t~

Questions?

- How can we calculate for Tevatron (= p p~ collider)?
- How much the cross section is at 2TeV Tevatron?
 Which subprocesses contribute to the cross section?
 Compare to the 2TeV LHC result?

```
MG5_aMC> generate p p~ > t t~
MG5_aMC> display multiparticles
MG5_aMC> launch (modify run_card)
```

EX-1.5; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5 aMC> generate p p > t t~

Questions?

- Are diagrams with photon(a)/Z included?
- How can we include them? How much are the cross sections with each command below different?

```
MG5_aMC> display particles a (check what is "a")
MG5_aMC> generate p p > t t~
MG5_aMC> generate p p > t t~ QCD=0
MG5_aMC> generate p p > t t~ QED=0
MG5_aMC> generate p p > t t~ QED=99 (or QED<=99)
```


EX-1.5; warm up (top quark pair production)

EX-1.6; warm up (top quark pair production)

Top-pair production at the LHC:
 MG5_aMC> generate p p > t t~

Questions?

 Check the energy dependence of the cross section from ITeV up to I00TeV?

Open a text file (mg5test.txt) and put the commands inside. ./bin/mg5_aMC mg5test.txt

- Check the top-quark mass dependence (170 GeV < m_t < 180 GeV) at the 14TeV-LHC?
 - > set mt scan:[170+i for i in range (0,11)]