

- Theory: the top quark is an unstable particle:
 - It decays: ~100% of times into bW
 - The W boson decays too:
 - 67% (2/3) of times into hadrons
 - 22% (2/9) of times into "leptons" (e- v_e or μ - v_{μ})
 - 11% (1/9) of times into τ -V $_{\tau}$
- A decayed pair of top quarks can be classified as:
 - hadronic (both tops to hadrons)
 - semileptonic (one top to hadrons, the other to leptons)
 - dileptonic (both quarks to leptons)

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
- Learn the syntax to specify decay chains
- Generate the code for dileptonic top decay and compute the cross-section. Compare with the case where the top does not decay (leave all parameters as default)
- Compute the cross section for m_t=170, 175 and 180 GeV. Do you see anything strange?
- What is the difference with p p > l+ l- vl vl~ b
 b~?

- How often a top pair decays hadronically/semi-leptonically/dileptonically?
 - Since the top always decays to Wb, look at how a pair of W decays (b's are stable)
 - Hadronically: 2/3 * 2/3 = 4/9
 - Semi-lep. (incl. τ): 2 * 1/3 * 2/3 = 4/9
 - Di-lep. (incl. τ): 1/3 * 1/3 = 1/9

• Questions:

Learn the syntax to specify decay chains

• > help generate

-- generate diagrams for a given process

General leading-order syntax:

o generate INITIAL STATE > REQ S-CHANNEL > FINAL STATE \$ EXCL S-CHANNEL / FORBIDDEN PARTICLES COUP1=ORDER1 COUP2^2=ORDER2 @N

```
o Example: generate l+ vl > w+ > l+ vl a $ z / a h QED=3 QCD=0 @1
```

> Alternative required s-channels can be separated by "|": b b~ > W+ W- | H+ H- > ta+ vt ta- vt~

```
> If no coupling orders are given, MG5 will try to determine
orders to ensure maximum number of QCD vertices.
```

> Desired coupling orders combination can be specified directly for the squared matrix element by appending '^2' to the coupling name. For example, 'p p > j j QED^2==2 QCD^==2' selects the QED-QCD interference terms only. The other two operators '<=' and '>' are supported. Finally, a negative value COUP^2==-I refers to the N^(-I+1)LO term in the expansion of the COUP order.

> To generate a second process use the "add process" command Decay chain syntax:

```
o core process, decay1, (decay2, (decay2', ...)), ... etc
```

```
o Example: generate p p > t~ t QED=0, (t~ > W- b~, W- > l- vl~), t > j j b @2
```

- > Note that identical particles will all be decayed
- > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)

Something like this!

- Generate the code for dileptonic top decay and compute the cross-section. Compare with what computed in Ex. I
 - > generate p p > t t~, (t > w+ b, w+ > l+ vl), (t~ > w- b~, w- > l- vl~)
 - > output myttbardecayed
 - > launch
- What do we expect? $\frac{4/81}{2} = 25$
 - Something like 505 * 1/9 < 56 pb?
- Wait: what is 1+/1-?
 - > display multi particles

Multiparticle labels:

all = g u c d s u~ c~ d~ s~ a ve vm vt e- mu- ve~ vm~ vt~ e+ mu+ t b t~ b~ z w+ h w- ta- ta+ l- = e- muj = g u c d s u~ c~ d~ s~ vl = ve vm vt l+ = e+ mu+ p = g u c d s u~ c~ d~ s~ vl~ = ve~ vm~ vt~ Cross-section : 22.63 +- 0.01553 pb Nb of events : 10000

last bit of discrepancy comes from more subtle things (essentially scales)

- Questions:
 - Compute the cross section for m_t=170, 175 and 180 GeV. Do you see anything strange?

Available	Results
-----------	---------

launch	run_	170	Run	Collider	Banner	Cross section (pb)	Events	Data	Output	Action
done	170	175	run_170	p p 6500.0 x 6500.0 GeV	<u>tag 1</u>	<u>21.83 ± 0.061</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
set mt	mt 175	1/2	run_175	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	23.41 ± 0.064	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
launch set mt	run_ 180	_180	run_180	p p 6500.0 x 6500.0 GeV	<u>tag 1</u>	<u>24.92 ± 0.058</u>	10000	parton madevent	<u>LHE</u>	remove run launch detector simulation
done	_ • • •									

Main Page

• The cross section grows with m_t!?!

What is happening?

$$\sigma_{P \times D} = \int dPS \, |M_P|^2 \frac{1}{(s_D - m^2)^2 + m^2 \Gamma^2} |M_D|^2$$
$$= \int dPS \, |M_P|^2 \frac{\pi}{m\Gamma} \delta(s_D - m^2) |M_D|^2 + \mathcal{O}(\Gamma^0)$$

The total width Γ depends on m and should be updated!

• Questions:

 Compute the cross section for m_t=170, 175 and 180 GeV. Do you see anything strange?

launch run_170_gammaok	run_170	p p 6500.0 x 6500.0 GeV	<u>tag 1</u>	21.83 ± 0.061	10000	parton madevent	<u>LHE</u>
set wt auto done	run_175	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>23.41 ± 0.064</u>	10000	parton madevent	<u>LHE</u>
launch run_175_gammaok set mt 175	run_180	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>24.92 ± 0.058</u>	10000	parton madevent	<u>LHE</u>
set wt auto done	run_170_gammaok	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>24.71 ± 0.071</u>	10000	parton madevent	<u>LHE</u>
set wt auto	run_175_gammaok	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>21.54 ± 0.064</u>	10000	parton madevent	<u>LHE</u>
done	run_180_gammaok	p p 6500.0 x 6500.0 GeV	<u>tag_1</u>	<u>18.8 ± 0.05</u>	10000	parton madevent	<u>LHE</u>

With "set wt auto" the top width is re-computed from the param_card parameters

- Questions:
 - What is the difference with p p > l+ l- vl vl~ b
 b~?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' tt decayed, but also other things

- Questions:
 - What is the difference with p p > l+ l- vl vl~ b
 b~?
 - It is a much more complex process (will not run in 10s on a laptop)
 - Each subprocess has O(100) diagrams rather than O(1)
 - This process 'contains' tt decayed, but also other things
 - Which one is correct?
 - Strictly speaking $t\bar{t}$ decayed, is correct only in the limit Γ_t =0 i.e. when tops are on-shell
 - If one searches for (on-shell) top-pair production (e.g.imposing cuts on I, v, b mass), the full process will give little extra contribution
 - If one wants to look away from the resonant region, then the full

- Questions:
 - What is the difference with p p > l+ l- vl vl~ b
 b~?
 - Have a look at single-top production (Papanastasiou et al. arXiv:1305.7088)

Iwate Collider School 2024