EX-3; change parameters

- Semi-leptonic decays in top-pair production at the LHC: MG5_aMC> generate p p > t t~, t > b l- vl~, t~ > b~ j j
- How can we change?
 - top mass
 - top width
 - W mass

edit param_card.dat and/or run_card.dat in Cards/.

or

use the "set" command.

- beam energy
- pT cut on leptons

EX-3; change parameters

- Semi-leptonic decays in top-pair production at the LHC: MG5_aMC> generate p p > t t~, t > b l- vl~, t~ > b~ j j
- How can we change?

EX-4; cross sections (param scan; root-S)

• Reproduce the red curve.

EX-4; cross sections (param scan; root-S)

Run MG5aMC with a script file; \$./bin/mg5_aMC test_eehz.mg5 Make a data file; \$ cd Proc_eehz \$./bin/madevent Proc_eehz> print_resultsformat=shortpath=xsec.dat	generate e+ e- > h z output Proc_eehz # launch -n 230 analysis = OFF 0 set polbeam1 30 set polbeam2 -80 set nevents 1 set ebeam 115 0 # launch -n 240 0 set ebeam 120
xsec.dat # run_name tag cross error Nb_event cross_after_matching nb_event_after matching 230 tag_1 0.32727 0.00010604 1 240 tag_1 0.3559 0.00013049 1 250 tag_1 0.35566 0.00017036 1 260 tag_1 0.34348 0.00018299 1 270 tag_1 0.32577 0.00020246 1 280 tag_1 0.30622 0.0002151 1 290 tag_1 0.28693 0.00021947 1 300 tag_1 0.26736 0.00024268 1 350 tag_1 0.19108 0.00023025 1 400 tag_1 0.14076 0.0002094 1 450 tag_1 0.10777 0.00018119 1 500 tag_1 0.084641 0.00027909 1	0 # launch -n 250 0 set ebeam 125 0 #

Solution

test eehz.ma5

Solution

EX-4; cross sections (param scan; root-S)

Make a plot (e.g. by matplotlib); \$ python xsec.py

import numpy as np import matplotlib.pyplot as plt

import data files
data = np.loadtxt('xsec.dat', skiprows=1, usecols=(0,2))

define the variables for the x and y axes roots=data[:,0] xsec=data[:,1]

setup a plot
plt.plot(roots,xsec*1000,'-or',label='\$P(e^+,e^-)=(0.3,-0.8)\$')
xlab=r'\$\sqrt{s}\$ [GeV]'
ylab=r'\$\sigma(e^+e^-\to hZ)\$ (fb)'
xlimrange=[200,500]
ylimrange=[0,400]
savepdf='xsec.pdf'

setup the details
plt.xlim(xlimrange)
plt.ylim(ylimrange)
plt.title("Higgs production (Fig.3 in 1710.07621)")
plt.xlabel(xlab, fontsize=16)
plt.ylabel(ylab, fontsize=16)
plt.legend()
plt.grid()
plt.gca().xaxis.set_tick_params(which='both', direction=
plt.gca().yaxis.set_tick_params(which='both', direction=
plt.gca().yaxis.set_

plt.gca().xaxis.set_tick_params(which='both', direction='in',bottom=True, top=True, left=True, right=True) plt.gca().yaxis.set_tick_params(which='both', direction='in',bottom=True, top=True, left=True, right=True)

xsec.py

output

plt.savefig(savepdf, format='pdf', bbox_inches='tight')
plt.show()

EX-5; cross sections (param scan; masses)

Reproduce the black curves.

EX-5; cross sections (param scan; masses)

 \$./bin/mg5_aMC > import model MSSM_SLHA2 > generate p p > go go > output Proc_gluinopair > launch -n mgo27TeV > analysis = OFF 			
 > 0 > set nevents 1 > set ebeam 13500 > set mgo scan:[1000*i for i in range (1,8)] > 0 	Check the scan result \$ cd Proc_gluinopair/l \$ more scan_mgo27T #run_name	s; Events/ eV[scan_07].txt mass#1000021	Cross
	mgo27TeV mgo27TeV_scan_02 mgo27TeV_scan_03 mgo27TeV_scan_04 mgo27TeV_scan_05	1.000000e+03 2.000000e+03 3.000000e+03 4.000000e+03 5.000000e+03	3.404119e+00 4.243611e-02 1.852129e-03 1.246744e-04 1.017567e-05

mgo27TeV_scan_05

mgo27TeV_scan_06

mgo27TeV_scan_07

6.00000e+03

7.00000e+03

9.133868e-07

9.263558e-08

Solution

EX-5; cross sections (param scan; masses)

Make a plot (e.g. by matplotlib); \$ python xsec.py

xsec_gluinopair.py

import numpy as np import matplotlib.pyplot as plt

import data files

data1 = np.loadtxt('scan_mgo27TeV[-_scan_07].txt', skiprows=1, usecols=(1,2)) data2 = np.loadtxt('scan_mgo14TeV[-_scan_07].txt', skiprows=1, usecols=(1,2))

define the variables for the x and y axes
mgo=data1[:,0]
xsec1=data1[:,1]
xsec2=data2[:,1]

setup a plot plt.plot(mgo,xsec1*10**6,'-or',label='\$\sqrt{s}=27\$TeV') plt.plot(mgo,xsec2*10**6,'-or',label='\$\sqrt{s}=14\$TeV')

xlab=r'\$m_{\tilde g}\$ [GeV]' ylab=r'\$\sigma(pp\to \tilde g\tilde g)\$ (ab)' xlimrange=[1000,7000] ylimrange=[10**-1,10**7] savepdf='xsec_gluinopair.pdf'

setup the details
plt.yscale('log')
plt.xlim(xlimrange)
plt.ylim(ylimrange)
plt.title("Gluino pair production (Fig.2 in 1812.07831)")
plt.xlabel(xlab, fontsize=16)
plt.ylabel(ylab, fontsize=16)
plt.legend()

plt.grid()

plt.gca().xaxis.set_tick_params(which='both', direction='in',bottom=True, top=True, left=True, right=True) plt.gca().yaxis.set_tick_params(which='both', direction='in',bottom=True, top=True, left=True, right=True)

output
plt.savefig(savepdf, format='pdf', bbox_inches='tight')
plt.show()

Kentarou Mawatari (Iwate U.)

EX-6; process generation (syntax)

- What is the difference?
 - I. > generate p p > e+ e-
 - 2. > generate p p > z > e+e-
 - 3. > generate p p > z, z > e+e-
 - 4. > generate p p > e+ e-\$ z
 - 5. > generate p p > e+ e-\$
 - 6. > generate p p > e+ e- / z

Edit myprocess/Cards/ madanalysis5_parton_card.dat to refine bins of plots.

Run MA5 later;

- \$ cd myprocess/
- \$./bin/madevent

myprocess> madanalysis5_parton

• Compare the distributions of the lepton-pair invariant mass.

Run MA5 standalone; \$ MG5_aMC_vX_Y_Z/HEPTools/madanalysis5/madanalysis5/bin/ma5

EX-6; process generation (syntax)

Run MA5 standalone;

\$... HEPTools/madanalysis5/madanalysis5/bin/ma5 test.ma5

