

Beyond the Standard Model physics made easy with FEYNRULES

Benjamin Fuks

LPTHE / Sorbonne Université

Tutorial session @ Appi

I March 2025

New physics made easy with FEYNRULES

Benjamin Fuks - 01.03.2025 - 1

Outline

Implementing supersymmetric QCD in FEYNRULES 2.

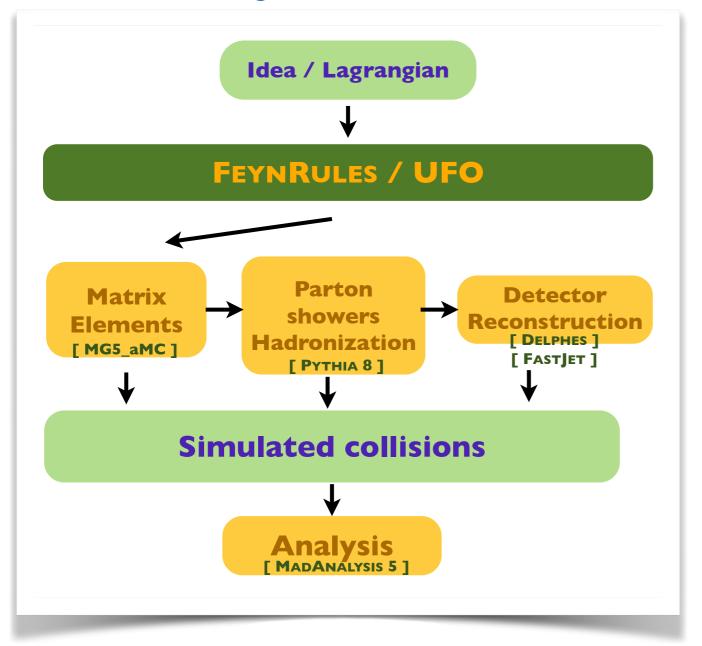
3. Using FEYNRULES with supersymmetric QCD model

5. Appendix: advanced model implementation techniques

A comprehensive approach to MC simulations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Tools connecting an idea to simulated collisions



- Model building
- Hard scattering
 - **★** Feynman diagram and amplitude generation
 - ★ Monte Carlo integration
 - \star Event generation
- QCD environment
 - \star Parton showering
 - ★ Hadronisation
 - \star Underlying event
- Detector simulation
 - \star Simulation of the detector response
 - ★ Object reconstruction
- Event analysis
 - ★ Signal/background analysis
 - \star LHC recasting

Benjamin Fuks - 01.03.2025 - 3

FEYNRULES in a nutshell

What is FEYNRULES?

- A framework to develop new physics models
- Automatic export to Monte Carlo event generators

Facilitate phenomenological investigations of BSM models
 Facilitate the confrontation of BSM models to data

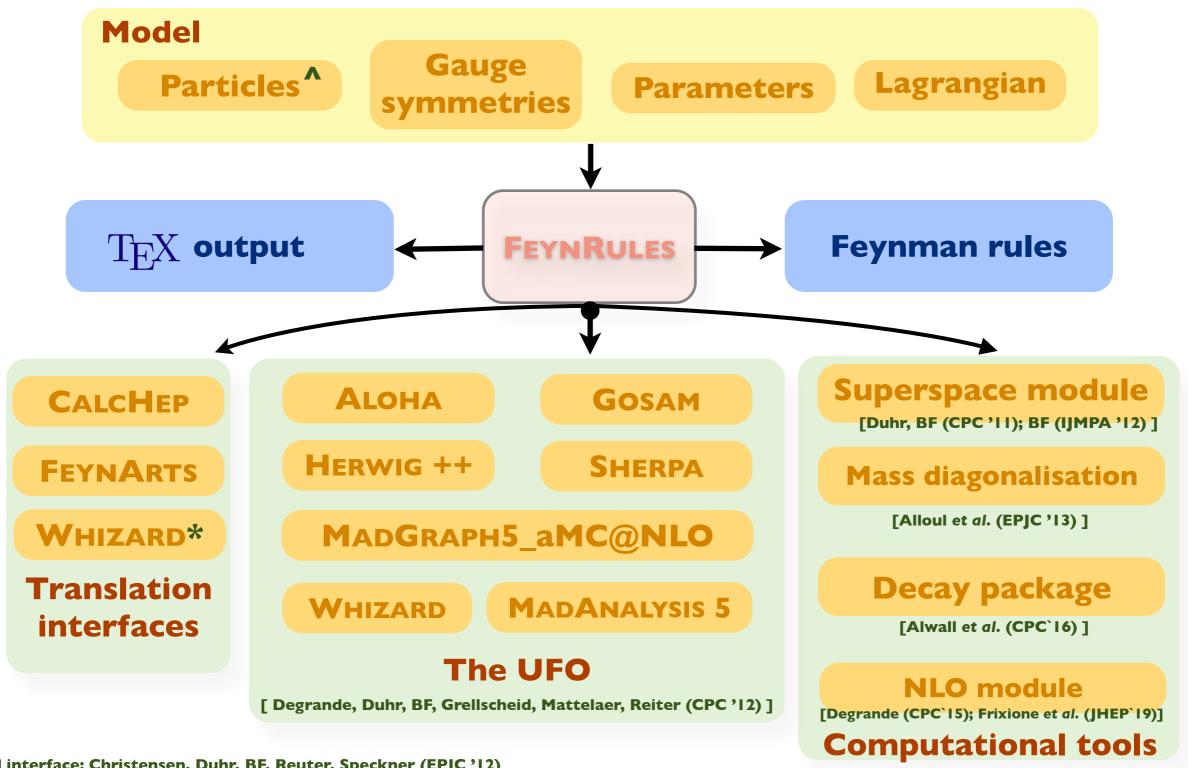
• Validation of implementations with several Monte Carlo programmes

Main features

- MATHEMATICA package
- Core function: derives Feynman rules from a Lagrangian
- Requirements: locality, Lorentz and gauge invariance
- Supported fields: scalars, (two- and four-component) fermions, vectors (and ghosts), spin-3/2, tensors, superfields

From FEYNRULES to Monte Carlo tools...

[Christensen, Duhr (CPC '09); Alloul, Christensen, Degrande, Duhr, BF (CPC'14)]



* Whizard interface: Christensen, Duhr, BF, Reuter, Speckner (EPJC '12)

^ Support for spin 3/2: Christensen, de Aquino, Deutschmann, Duhr, BF, Garcia-Cely, Mattelaer, Mawatari, Oexl, Takaesu (EPJC 'I3)

New physics made easy with FEYNRULES

Outline

Implementing supersymmetric QCD in FEYNRULES

3. Using FEYNRULES with supersymmetric QCD model

New physics made easy with FEYNRULES

Supersymmetric QCD: particle content

Particle content

- Two matter supermultiplets in the fundamental representation of SU(3)c
 - ★ One massive Dirac fermion: a quark
 - ***** Two massive scalar fields: a left-handed and a right-handed squark
- One (SU(3)_c) gauge supermultiplet

* One massive Majorana fermion: a gluino

* One massless gauge boson: the gluon

(Broken) supersymmetric QCD: the model

The dynamics of the model is embedded in the Lagrangian

$$\mathcal{L} = -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\tilde{\tilde{g}}\tilde{g} + D_{\mu}\tilde{q}_{L}^{\dagger}D^{\mu}\tilde{q}_{L} + D_{\mu}\tilde{q}_{R}^{\dagger}D^{\mu}\tilde{q}_{R} + i\bar{q}D\bar{p}q$$
$$-m_{\tilde{q}_{L}}^{2}\tilde{q}_{L}^{\dagger}\tilde{q}_{L} - m_{\tilde{q}_{L}}^{2}\tilde{q}_{R}^{\dagger}\tilde{q}_{R} - m_{q}\bar{q}q - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g}$$
$$-\frac{g_{s}^{2}}{2}\Big[-\tilde{q}_{L}^{\dagger}T^{a}\tilde{q}_{L} + \tilde{q}_{R}^{\dagger}T^{a}\tilde{q}_{R}\Big]\Big[-\tilde{q}_{L}^{\dagger}T^{a}\tilde{q}_{L} + \tilde{q}_{R}^{\dagger}T^{a}\tilde{q}_{R}\Big]$$
$$+\sqrt{2}g_{s}\Big[-\tilde{q}_{L}^{\dagger}T^{a}(\bar{\tilde{g}}^{a}P_{L}q) + (\bar{q}P_{L}\tilde{g}^{a})T^{a}\tilde{q}_{R} + \text{h.c.}\Big]$$

- Kinetic terms for all fields (first line)
- Mass terms for the squarks, quarks and gluino (second line)
- Supersymmetric gauge interactions for all fields (last two lines)

A FEYNRULES model file

A FEYNRULES model file is an .fr file written in MATHEMATICA syntax

Preamble

- \star Author information
- ***** Model information
- ***** Index definitions

Declaration of fields

- ★ Names, spins, PDG codes
- \star Indices, quantum numbers
- \star Masses, widths
- ***** Classes and class members

Declaration of the gauge group

- ★ Abelian or not
- ★ Representation matrices
- ★ Structure constants
- ★ Coupling constant
- ★ Gauge boson or vector superfield

Declaration of parameters

- \star External and internal
- ★ Scalar and tensor

A Lagrangian

Preamble: general information

An electronic signature for the model implementation

- Important for traceability, documentation, contact with the authors, etc.
- Reference publications
- Webpage information

```
M$ModelName = "SUSYQCD";
M$Information = {
  Authors -> {"Benjamin Fuks"},
  Date -> "19.11.18",
  Version -> "1.0",
  Institutions -> {"LPTHE / Sorbonne U."},
  Emails -> {"fuks@lpthe.jussieu.fr"}
};
```

Preamble: indices

Index dimensions

- Fundamental SU(3)_C indices for squarks and quarks: Colour, dimension 3
- Adjoint SU(3)_C indices for gluons and gluinos: *Gluon*, dimension 8
- Lorentz and spin indices automatically handled

IndexRange[Index[Gluon]] = NoUnfold[Range[8]]; IndexRange[Index[Colour]] = NoUnfold[Range[3]];

$QCD = special role in event generators \rightarrow special names$

- Colour, Sextet and Gluon for colour indices
- **G** for the gluon field
- T for the fundamental representation matrices
- f and d for the structure constants
- G/gs and aS for the coupling constants

The style of the indices can be specified

- Fundamental indices starting with *m*
- Adjoint indices starting with *a*

IndexStyle[Colour, m];
IndexStyle[Gluon, a];

Gauge groups (I)

Each element the group is declared in the M\$GaugeGroups list

- One group \equiv one set of MATHEMATICA replacement rules
 - ***** We must only declare $SU(3)_C$ (name: $SU(3)_C$)

M\$GaugeGroups = { SU3C == {	
Abelian	-> False,
GaugeBoson	-> G,
CouplingConstant	-> gs,
StructureConstant	-
Representations	-> { {T,Colour} }
}	
};	

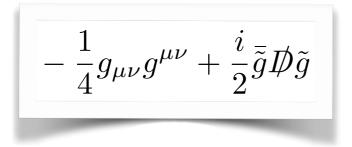
- One rule = one group property
 - * Abelian: abelian or non-abelian group
 - ★ GaugeBoson: associated gauge boson
 - ***** CouplingConstant, StructureConstant: coupling and structure constants
 - * **Representations**: list of 2-tuples linking indices to representations

See the manual for more details on gauge groups

Gauge groups (2)

Advantages of a proper gauge group declaration

- Writing Lagrangians more easily
 - **★** Covariant derivatives (DC[field, Lorentz index])
 - * Field strength tensors (FS[field, Lorentz index 1, Lorentz index 2])
 - * Useful for Lagrangian building in superspace (briefly covered in the last slides)
- Example: gluon and gluino kinetic terms



```
-\frac{1}{4}g_{\mu\nu}g^{\mu\nu}+\frac{i}{2}\bar{\tilde{g}}D\tilde{\tilde{g}} \qquad \begin{array}{c} -1/4 \ \text{FS[G,mu,nu,a]} \ \text{FS[G,mu,nu,a]} + \\ \text{I/2 gobar.Ga[mu].DC[go, mu]} \end{array}
```

The gluon field

Each field is an element of the M\$ClassesDescription list

- A declaration \equiv a set of MATHEMATICA replacement rules
- In our SUSY-QCD model, we first declare the SU(3)_C gauge boson: G

```
M$ClassesDescription = {
    V[1] == {
        ClassName -> G,
        SelfConjugate -> True,
        Indices -> {Index[Gluon]},
        Mass -> 0,
        Width -> 0,
        PDG -> 21
    },
```

- One rule = one property of the field
 - * Vector field \rightarrow the label is V[1] (with V, and not F, S, R, T, etc.)
 - **\star** ClassName: defines a symbol for Lagrangians \rightarrow G
 - ***** Indices: the gluon in the adjoint representation
 - \rightarrow tagged as gauge boson of SU(3)_c \rightarrow Gluon internally linked to the adjoint
 - * Others: vanishing mass and width, PDG code = 21, self-conjugate

A Majorana gluino field

A second element in the M\$ClassesDescription list

F[1] == {	
ClassName	-> go,
SelfConjugate	-> True,
Indices	<pre>-> {Index[Gluon]},</pre>
Mass	-> {Mgo,500},
Width	-> {Wgo,10},
PDG	-> 1000021
},	

- Differences with the gluon field declaration
 - * Four-component fermionic field \rightarrow F[I] (starting with an F)
 - \star Classname: two symbols for the Lagrangian \rightarrow go and gobar
 - * Mass/width: two symbols and associated numerical values

See the manual for more details on field declarations

Summary

Advanced techniques

Weyl/Majorana gluino fields

Second option: two-component spinors

W[1] == {		
ClassName	->	gow,
Unphysical	->	True,
Chirality	->	Left,
SelfConjugate	->	False,
Indices	->	<pre>{Index[Gluon]},</pre>
},		

F[1] == {	
ClassName	-> go,
WeylComponents	-> gow,
SelfConjugate	-> True,
Indices	<pre>-> {Index[Gluon]},</pre>
Mass	-> {Mgo,500},
Width	-> {Wgo,10},
PDG	-> 1000021
},	

- Extra options available
 - * Two-component and four-component fermions \rightarrow W[I] (with a W) and F[I]
 - ★ Weyl fermions unphysical → linked to four-component fermions (WeylComponents)
 - \star Several symbols defined \rightarrow go and gobar; gow and gowbar
 - \star Chirality to specify

See the manual for more details on field declarations

Summary

The (top) quark field

A third element in the M\$ClassesDescription list

F[2] == {	
ClassName	-> q,
SelfConjugate	-> False,
Indices	<pre>-> {Index[Colour]},</pre>
Mass	-> {Mq, 173},
Width	-> {Wq, 1.50833649},
PDG	-> 6
},	

- Nothing special compared to the other fields
 - \star Fundamental QCD indices specified

More on quarks: generation indices

Three generations of up-type quarks

F[3] == {	
ClassName	-> uq,
ClassMembers	-> {u, c, t},
SelfConjugate	-> False,
Indices	<pre>-> {Index[Gen], Index[Colour]},</pre>
FlavorIndex	-> Gen,
Mass	-> {Mu, {MU,2.55*^-3}, {MC,1.42}, {MT,173}},
Width	-> {0, 0, {WT, 1.50833649}},
PDG	$->$ {2, 4, 6}
},	

- Slight differences for a bunch of options (+ new options)
 - * ClassMembers: all the members of the class
 - * A generation index: Gen (FlavorIndex defines the flavour index)
 - * Mass, Width, PDG: one per class member (+ generic mass symbol)

Squarks

Extra elements in the M\$ClassesDescription list

```
S[3] == {
 Width
 PDG
},
S[4] == {
```

Width

PDG

}

- ClassName -> sq1, SelfConjugate -> False, Indices -> {Index[Colour]}, Mass -> {Msq1,300}, -> {Wsq1,10}, -> 1000006
- ClassName -> sq2, SelfConjugate -> False, Indices -> {Index[Colour]}, Mass -> {Msq2,800},
 - -> {Msq2,800}, -> {Wsq2,2},
 - -> 2000006

- Nothing special
 - ★ Scalar field \rightarrow S[3]
 - \star Classname \rightarrow pairs of symbols: sq1, sq2, sq1bar and sq2bar
 - ★ Mass, width, Indices, etc. (standard)

Squark mixing

Mixing implemented via physical and unphysical fields

```
S[1] == {
  ClassName -> sqL,
  SelfConjugate -> False,
  Indices -> {Index[Colour]},
  Unphysical -> True,
  Definitions -> {sqL[c_] -> Cos[theta] sq1[c] - Sin[theta] sq2[c]}
},
S[2] == {
  ClassName -> sqR,
  SelfConjugate -> False,
  Indices -> {Index[Colour]},
  Unphysical -> True,
  Definitions -> {sqR[c_] -> Sin[theta] sq1[c] + Cos[theta] sq2[c]}
},
```

• Squark fields mix as

$$\begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix}$$

★ Left and right-handed squarks unphysical → removed from the Lagrangian and replaced

- **★ Definitions** = the replacement rules (inversion of the above relation)
 - → Rotations performed automatically
 - \rightarrow Lagrangian written in the gauge basis (easier with sqL / sqR)

Parameters

The model requires to implement three parameters

Masses and widths handled automatically

$$\mathcal{L} = \begin{bmatrix} -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\tilde{p}\tilde{g} + D_{\mu}\tilde{q}_{L}^{\dagger}D^{\mu}\tilde{q}_{L} + D_{\mu}\tilde{q}_{R}^{\dagger}D^{\mu}\tilde{q}_{R} + i\bar{q}D\bar{p}q \\ -m_{\tilde{q}_{L}}^{2}\tilde{q}_{L}^{\dagger}\tilde{q}_{L} - m_{\tilde{q}_{L}}^{2}\tilde{q}_{R}^{\dagger}\tilde{q}_{R} - m_{q}\bar{q}q - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g} \\ -\frac{g_{s}^{2}}{2} \Big[-\tilde{q}_{L}^{\dagger}T^{a}\tilde{q}_{L} + \tilde{q}_{R}^{\dagger}T^{a}\tilde{q}_{R} \Big] \Big[-\tilde{q}_{L}^{\dagger}T^{a}\tilde{q}_{L} + \tilde{q}_{R}^{\dagger}T^{a}\tilde{q}_{R} \Big] \\ +\sqrt{2}g_{s} - \tilde{q}_{L}^{\dagger}T^{a}(\bar{\tilde{g}}^{a}P_{L}q) + (\bar{q}P_{L}\tilde{g}^{a})T^{a}\tilde{q}_{R} + \text{h.c.} \Big]$$

- The strong coupling explicit and implicit
 - → gs needed
 - $\rightarrow \alpha_s$ as required by MC tools
- Squark mixing angle θ to add

$$\begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix}$$

Parameters: strong coupling

Parameters are declared as elements of the list M\$Parameters

- One declaration \equiv one set of MATHEMATICA replacement rules
- Strong coupling: α_s and g_s not independent

```
M$Parameters = {
 aS
       == {
   ParameterType -> External,
                    -> 0.1184,
   Value
   InteractionOrder -> {QCD, 2}
 },
 qs == {
   ParameterType -> Internal,
           -> Sqrt[4 Pi aS],
   Value
   InteractionOrder -> {QCD, 1},
   ParameterName
                    -> G
 },
```

- * Internal and External parameters
 - → External = free param. (numerical)
 - → Internal \equiv dependent param (formula)
- ★ InteractionOrder: specific to some MC
 - → more efficient diagram generation
- ★ ParameterName: QCD special

See the manual for more details on parameter declarations

Parameters: squark mixing

The squark mixing angle

• Nothing special (standard external parameter)

```
theta == {
   ParameterType -> External,
   Value -> Pi/4
}
```

More options (assuming matrix-form mixing)

- Tensor parameters can be implemented too (Indices, Unitary)
- Complex parameters can be implemented too (ComplexParameter)

See the manual for more details on parameter declarations

Parameter organisation

Les Houches blocks to organise external parameters

- Les Houches parameter card by MC programmes
 - → BlockName + OrderBlock
- Unspecified: the 'FRBlock' block

Complete α_s implementation as an example

Many options (TeX, Description, BlockName, OrderBlock)

```
aS == {
  ParameterType -> External,
  BlockName -> SMINPUTS,
  OrderBlock -> 3,
  Value -> 0.1184,
  InteractionOrder -> {QCD,2},
  TeX -> Subscript[\[Alpha],s],
  Description -> "Strong coupling constant at the Z pole"
},
```

Outline

2. Implementing supersymmetric QCD in FEYNRULES

3. Using FEYNRULES with supersymmetric QCD model

Getting started

New physics made easy with FEYNRULES

Benjamin Fuks - 01.03.2025 - 26

Starting a FEYNRULES MATHEMATICA session

Step I: loading FEYNRULES into MATHEMATICA

- The FEYNRULES path
- Loading FEYNRULES

```
In[1]:= $FeynRulesPath = SetDirectory["~/Work/tools/FeynRules/branch/feynrules-current"];
        << FeynRules`</pre>
```

```
- FeynRules -
```

```
Version: 2.3.32 (12 March 2018).
```

```
Authors: A. Alloul, N. Christensen, C. Degrande, C. Duhr, B. Fuks
```

Please cite:

- Comput.Phys.Commun.185:2250-2300,2014 (arXiv:1310.1921);
- Comput.Phys.Commun.180:1614-1641,2009 (arXiv:0806.4194).

http://feynrules.phys.ucl.ac.be

The FeynRules palette can be opened using the command FRPalette[].

The output:

• Information on FEYNRULES, authors, version numbers, references, etc.

Loading the model implementation

Step 2: loading the SUSY-QCD implementation into FEYNRULES

- Moving to the right directory
- Loading the model itself

```
SetDirectory[NotebookDirectory[]];
LoadModel["susyqcd.fr"];
This model implementation was created by
Benjamin Fuks
Model Version: 1.0
For more information, type ModelInformation[].
  - Loading particle classes.
  - Loading gauge group classes.
```

- Loading parameter classes.

Model SUSYQCD loaded.

The output:

- Preamble of the model are printed to the screen
- More information from ModelInformation[]

The vector Lagrangian

The SUSY-QCD vector Lagrangian

The gauge sector of the theory : one gauge supermultiplet

- One massive Majorana fermion: a gluino
- One massless gauge boson: the gluon

Dynamics embedded in the vector Lagrangian

$$\mathcal{L}_{\text{vector}} = -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\tilde{g} - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g}$$

- Kinetic terms (both fields)
- Mass terms for the gluino
- Gauge interactions (both fields, through gauge-covariant objects)

Implementing the vector Lagrangian

Textbook expression:

$$\mathcal{L}_{\text{vector}} = -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\!\!\!/\tilde{g} - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g}$$

Strengths of a proper gauge-group implementation

- Shortcut functions (DC, FS, etc.)
- Very compact

* Indices understood (automatic handling)

Indices could be noted explicitly

```
LVector2 := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] +
I/2 Ga[mu,s1,s2] gobar[s1,a].DC[go[s2,a],mu] -
1/2 Mgo gobar[s1,a].go[s1,a];
```

FEYNRULES implementation

Summary

LVector1 := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] +

1/2 Mgo gobar.go;

I/2 gobar.Ga[mu].DC[go,mu] -

Checks of the implementation

Textbook expression

$$\mathcal{L}_{\text{vector}} = -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\!\!\!/\tilde{g} - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g}$$

Printing the vector Lagrangian

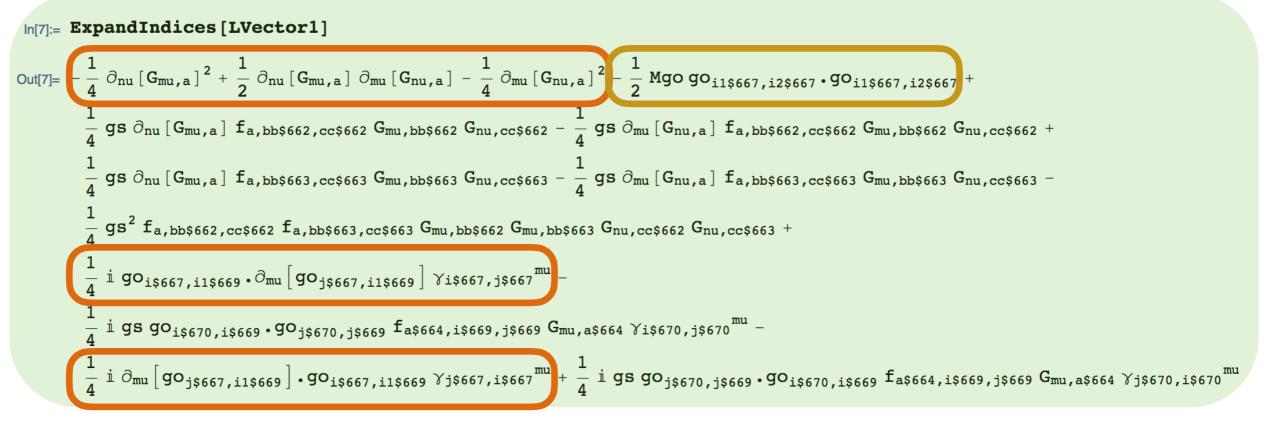
$$\begin{aligned} \ln[6] &:= LVector1 \\ Out[6] &= -\frac{1}{2} Mgo \ go \cdot go + \frac{1}{2} \ i \ go \cdot \gamma^{mu} \cdot \left(\partial_{mu} \left[go \right] - i \ gs \ FSU3C^{a \$ 658} \cdot go \ G_{mu,a \$ 658} \right) - \\ &= \frac{1}{4} \left(-\partial_{nu} \left[G_{mu,a} \right] + \partial_{mu} \left[G_{nu,a} \right] + gs \ f_{a,bb \$ 656,cc \$ 656} \ G_{mu,bb \$ 656} \ G_{nu,cc \$ 656} \right) \\ &= (-\partial_{nu} \left[G_{mu,a} \right] + \partial_{mu} \left[G_{nu,a} \right] + gs \ f_{a,bb \$ 657,cc \$ 657} \ G_{mu,bb \$ 657} \ G_{nu,cc \$ 657} \right) \end{aligned}$$

The output:

- Covariant derivatives and field strength tensors automatically evaluated
- FSU3C = structure constants \rightarrow to be replaced in a second step by f_{abc}

Expansion of the Lagrangian

All indices restored automatically



- Kinetic terms (gluon and gluino)
- Mass terms (gluino)
- QCD interactions (with the proper structure constants)

Checks: Hermiticity

Textbook expression $\mathcal{L}_{\text{vector}} = -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\!\!\!/\tilde{g} - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g}$

FEYNRULES implementation

LVector1 := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] + I/2 gobar.Ga[mu].DC[go,mu] -1/2 Mgo gobar.go;

The Lagrangian must be Hermitian

• Feynman rules of the Lagrangian minus its Hermitian conjugate $ightarrow \mathcal{L}$ - \mathcal{L}

```
In[8]:= CheckHermiticity[LVector1];
Checking for hermiticity by calculating the Feynman rules contained in L-HC[L].
If the lagrangian is hermitian, then the number of vertices should be zero.
Starting Feynman rule calculation.
Expanding the Lagrangian...
No vertices found.
0 vertices obtained.
The lagrangian is hermitian.
```

Summary

Advanced techniques

Checks: normalisation

Textbook expression $\mathcal{L}_{\text{vector}} = -\frac{1}{4}g_{\mu\nu}g^{\mu\nu} + \frac{i}{2}\bar{\tilde{g}}D\!\!\!/\tilde{g} - \frac{1}{2}m_{\tilde{g}}\bar{\tilde{g}}\tilde{g}$

FEYNRULES implementation

LVector1 := -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] + I/2 gobar.Ga[mu].DC[go,mu] -1/2 Mgo gobar.go;

Kinetic and mass terms canonically normalised

- Normalisation of the quadratic terms (kinetic and mass terms)
- Absence of non-diagonal quadratic terms

```
In[9]:= CheckKineticTermNormalisation[LVector1];
Neglecting all terms with more than 2 particles.
All kinetic terms are diagonal.
All kinetic terms are correctly normalized.
In[11]:= CheckDiagonalMassTerms[LVector1];
All mass terms are diagonal.
```

Other checks: CheckDiagonalQuadraticTerms, CheckDiagonalKineticTerms

Summary

Checks: the mass spectrum

FEYNRULES gluino implementation

F[1] == {	
ClassName	-> go,
WeylComponents	-> gow,
SelfConjugate	-> True,
Indices	<pre>-> {Index[Gluon]},</pre>
Mass	-> {Mgo,500},
Width	-> {Wgo,10},
PDG	-> 1000021
},	

FEYNRULES Lagrangian implementation

Consistent mass information (numerically)

- Masses extracted from the Lagrangian
- Masses fixed in particle declarations

```
In[12]:= CheckMassSpectrum[LVector1]
Neglecting all terms with more than 2 particles.
All mass terms are diagonal.
Getting mass spectrum.
Checking for less then 0.1% agreement with model file values.
Out[12]//TableForm=
Particle Analytic value Numerical value Model-file value
go Mgo 500. 500.
```

Using FEYNRULES

Feynman rules

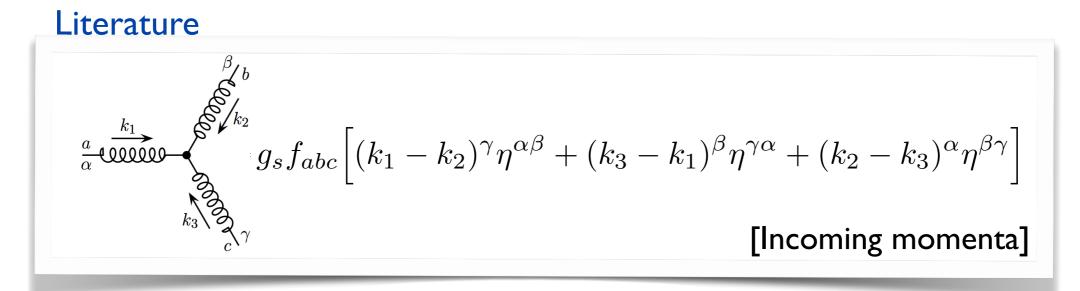
Extract all N-point interactions from the Lagrangian (with N>2)

ln[14]:=	4]:= FeynmanRules[LVector1, ScreenOutput → True];				
	Starting Feynman rule calculation.				
	Expanding the Lagrangian				
	Collecting the different structures that enter the vertex.				
	3 possible non-zero vertices have been found -> starting the computation: 3 / 3.				
	3 vertices obtained.				
	(* * * * * * * * * * * * * * * * * * *				

• Three vertices found in the Lagrangian

- \star One triple and quartic gluon interactions
- ★ One gluino-gluon interaction

The triple gluon vertex



FEYNRULES

```
Vertex 1

Particle 1 : Vector , G

Particle 2 : Vector , G

Particle 3 : Vector , G

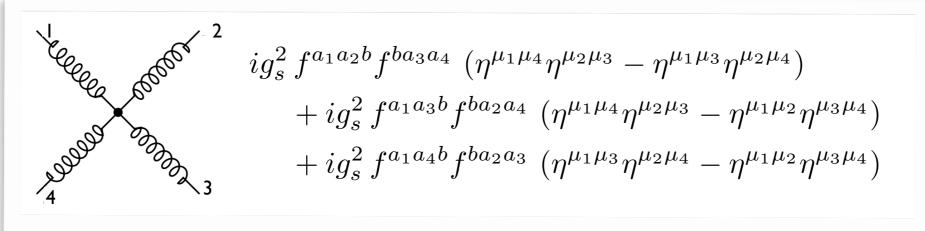
Vertex:

gs f_{a_1,a_2,a_3} p_1^{\mu_3} \eta_{\mu_1,\mu_2} - gs f_{a_1,a_2,a_3} p_2^{\mu_3} \eta_{\mu_1,\mu_2} - gs f_{a_1,a_2,a_3} p_1^{\mu_2} \eta_{\mu_1,\mu_3} + gs f_{a_1,a_2,a_3} p_3^{\mu_2} \eta_{\mu_1,\mu_3} + gs f_{a_1,a_2,a_3} p_3^{\mu_2} \eta_{\mu_1,\mu_3} + gs f_{a_1,a_2,a_3} p_3^{\mu_1} \eta_{\mu_2,\mu_3}
```

- Colour: index a_i related to the *i*th particle(a = style for adjoint SU(3)_C indices)
- Spin: index μ_i = Lorentz index of the *i*th (vector) particle

The quartic gluon vertex

Literature



FEYNRULES

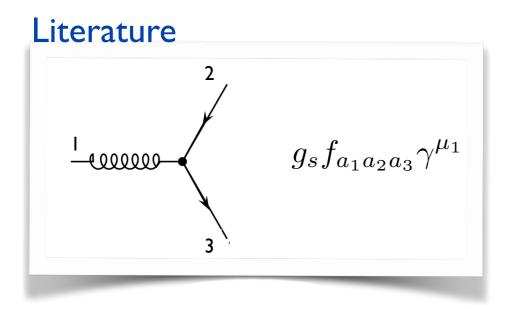
```
Vertex 2
Particle 1 : Vector , G
Particle 2 : Vector , G
Particle 3 : Vector , G
Particle 4 : Vector , G
Vertex:
i gs<sup>2</sup> (f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>4</sub> ημ<sub>2</sub>, μ<sub>3</sub> + f<sub>a1</sub>, a<sub>2</sub>, Gluon$1 f<sub>a3</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>4</sub> ημ<sub>2</sub>, μ<sub>3</sub> + f<sub>a1</sub>, a<sub>4</sub>, Gluon$1 f<sub>a2</sub>, a<sub>3</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>3</sub>, Gluon$1 f<sub>a2</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> - f<sub>a1</sub>, a<sub>4</sub>, Gluon$1 ημ<sub>1</sub>, μ<sub>2</sub> ημ<sub>3</sub>, μ<sub>4</sub> )
```

- Colour: a_i related to the ith particle (Gluon\$1 summed over)
- Spin: μ_i related to the *i*th (vector) particle

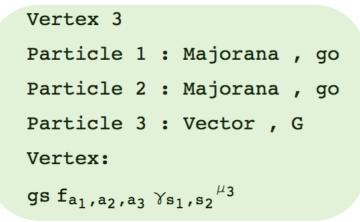
Using FEYNRULES

Summary

Gluon and gluino interactions



FEYNRULES



- Colour: a_i related to the *i*th particle
- Spin: μ_i related to the *i*th vector; s_i related to the *i*th fermion

The FeynmanRules function

The function FeynmanRules has many options

- Restriction on the interactions to display: MaxParticles, MaxCanonicalDimension, etc.
- Selection of specific particles: Free, Contains, etc.
- ScreenOutput: displaying the vertices to the screen or not
- FlavorExpand: perform a flavour expansion (otherwise classes used)

The matter Lagrangian

New physics made easy with FEYNRULES

The SUSY-QCD matter sector

Matter fields

- Two matter supermultiplets in the fundamental representation of SU(3)c
 - ★ One massive Dirac fermion: a quark
 - ***** Two mixing massive scalar fields: two squark
 - \star Gauge coupling to the SU(3)_c gauge supermultiplet

 $\begin{pmatrix} \tilde{q}_1\\ \tilde{q}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \tilde{q}_L\\ \tilde{q}_R \end{pmatrix}$

Lagrangian:

$$\mathcal{L}_{\text{matter}} = D_{\mu} \tilde{q}_{L}^{\dagger} D^{\mu} \tilde{q}_{L} + D_{\mu} \tilde{q}_{R}^{\dagger} D^{\mu} \tilde{q}_{R} + i \bar{q} \not D q - m_{\tilde{q}_{i}}^{2} \tilde{q}_{i}^{\dagger} \tilde{q}_{i} - m_{q} \bar{q} q$$
$$- \frac{g_{s}^{2}}{2} \Big[- \tilde{q}_{L}^{\dagger} T^{a} \tilde{q}_{L} + \tilde{q}_{R}^{\dagger} T^{a} \tilde{q}_{R} \Big] \Big[- \tilde{q}_{L}^{\dagger} T^{a} \tilde{q}_{L} + \tilde{q}_{R}^{\dagger} T^{a} \tilde{q}_{R} \Big]$$
$$+ \sqrt{2} g_{s} \Big[- \tilde{q}_{L}^{\dagger} T^{a} \big(\bar{\tilde{g}}^{a} P_{L} q \big) + \big(\bar{q} P_{L} \tilde{g}^{a} \big) T^{a} \tilde{q}_{R} \Big] + \text{h.c.}$$

- Mixed use of mass / gauge bases (makes it easier to implement)
- Kinetic terms (first three terms) and D-terms (second line) in the gauge basis
- Mass terms (end of first line) in the mass basis
- SUSY gauge quark-squark-gluino interactions (fourth line) in the gauge basis

Kinetic and gauge interactions

Kinetic and gauge interactions, as well as mass terms

$$\mathcal{L}_{\text{matter}} = D_{\mu} \tilde{q}_{L}^{\dagger} D^{\mu} \tilde{q}_{L} + D_{\mu} \tilde{q}_{R}^{\dagger} D^{\mu} \tilde{q}_{R} + i \bar{q} \not\!\!D q - m_{\tilde{q}_{i}}^{2} \tilde{q}_{i}^{\dagger} \tilde{q}_{i} - m_{q} \bar{q} q$$

The implementation in FEYNRULES follows the textbook expression

- Shortcut functions (DC)
- Very compact implementation
- Repeated indices summed

```
Lkin := DC[sqLbar[cc],mu] DC[sqL[cc],mu] +
    DC[sqRbar[cc],mu] DC[sqR[cc],mu] +
    I qbar.Ga[mu].DC[q,mu] -
    Mq qbar.q -
    Msq1^2 sq1bar[cc] sq1[cc] -
    Msq2^2 sq2bar[cc] sq2[cc];
```

Gauge eigenstates are used

Mass eigenstates are used

Kinetic term Feynman rules

Feynman rules

In[18]:= Simplify[FeynmanRules[Lkin]] // MatrixForm

```
Starting Feynman rule calculation.
```

Expanding the Lagrangian...

Collecting the different structures that enter the vertex.

9 possible non-zero vertices have been found -> starting the computation: 9 / 9.

5 vertices obtained.

Out[18]//MatrixForm=

$$\left\{ \{G, 1\}, \{sq1, 2\}, \{sq1^{\dagger}, 3\} \right\}$$

$$\left\{ \{G, 1\}, \{sq2, 2\}, \{sq2^{\dagger}, 3\} \right\}$$

$$\left\{ \{G, 1\}, \{G, 2\}, \{sq1, 3\}, \{sq1^{\dagger}, 4\} \}$$

$$i gs \left(p_{2}^{\mu_{1}} - p_{3}^{\mu_{1}} \right) T_{m_{3},m_{2}}^{a_{1}}$$

$$\left\{ \{G, 1\}, \{G, 2\}, \{sq1, 3\}, \{sq1^{\dagger}, 4\} \}$$

$$i gs^{2} \eta_{\mu_{1},\mu_{2}} \left(T_{m_{4},Colour\$1}^{a_{1}} T_{Colour\$1,m_{3}}^{a_{2}} + T_{Colour\$1,m_{3}}^{a_{1}} T_{m_{4},Colour\$1}^{a_{2}} \right)$$

$$\left\{ \{G, 1\}, \{G, 2\}, \{sq2, 3\}, \{sq2^{\dagger}, 4\} \}$$

$$i gs^{2} \eta_{\mu_{1},\mu_{2}} \left(T_{m_{4},Colour\$1}^{a_{1}} T_{Colour\$1,m_{3}}^{a_{2}} + T_{Colour\$1,m_{3}}^{a_{1}} T_{m_{4},Colour\$1}^{a_{2}} \right)$$

$$\left\{ \left\{ \bar{q}, 1 \right\}, \{q, 2\}, \{G, 3\} \right\}$$

$$i gs \gamma_{s_{1},s_{2}}^{\mu_{3}} T_{m_{1},m_{2}}^{a_{3}}$$

• Field rotations have been performed automatically

★ No more gauge eigenstates (sqL, sqR)

- All squark and quark QCD interactions derived
 - ★ The 3-point qqg interaction
 - * Two 3-point squark-gluon interactions
 - * Two 4-point squark-gluon interactions

D-terms (in the gauge eigenbasis)

$$\mathcal{L}_{\text{matter}} = -\frac{g_s^2}{2} \Big[-\tilde{q}_L^{\dagger} T^a \tilde{q}_L + \tilde{q}_R^{\dagger} T^a \tilde{q}_R \Big] \Big[-\tilde{q}_L^{\dagger} T^a \tilde{q}_L + \tilde{q}_R^{\dagger} T^a \tilde{q}_R \Big]$$

The FEYNRULES implementation follows the textbook expression

```
LD := -1/2 gs^2 *
    (sqRbar[cc1] T[a,cc1,cc2] sqR[cc2] - sqLbar[cc1] T[a,cc1,cc2] sqL[cc2]) *
    (sqRbar[cc3] T[a,cc3,cc4] sqR[cc4] - sqLbar[cc3] T[a,cc3,cc4] sqL[cc4]);
```

- Repeated indices (cc1, cc2, cc3, cc4) summed
- A single index can only be used twice

D-term Feynman rules

D-terms (in the gauge eigenbasis)

$$\mathcal{L}_{\text{matter}} = -\frac{g_s^2}{2} \Big[-\tilde{q}_L^{\dagger} T^a \tilde{q}_L + \tilde{q}_R^{\dagger} T^a \tilde{q}_R \Big] \Big[-\tilde{q}_L^{\dagger} T^a \tilde{q}_L + \tilde{q}_R^{\dagger} T^a \tilde{q}_R \Big]$$

Feynman rules computation

Simplify[FeynmanRules[LD]] // MatrixForm

($\left\{\{sq1, 1\}, \{sq1, 2\}, \{sq1^{\dagger}, 3\}, \{sq1^{\dagger}, 4\}\right\}$	$- \text{igs}^2 \operatorname{Cos} [2 \text{theta}]^2 \left(\mathbb{T}^{\text{Gluon}\$1}_{\text{m}_3,\text{m}_2} \mathbb{T}^{\text{Gluon}\$1}_{\text{m}_4,\text{m}_1} + \mathbb{T}^{\text{Gluon}\$1}_{\text{m}_3,\text{m}_1} \mathbb{T}^{\text{Gluon}\$1}_{\text{m}_4,\text{m}_2} \right)$
	$\left\{\{sq1, 1\}, \{sq1^{\dagger}, 2\}, \{sq1^{\dagger}, 3\}, \{sq2, 4\}\right\}$	$\frac{1}{2} \text{ i gs}^2 \text{ Sin} [4 \text{ theta}] \left(\mathbb{T}_{m_2,m_4}^{\text{Gluon}\$1} \mathbb{T}_{m_3,m_1}^{\text{Gluon}\$1} + \mathbb{T}_{m_2,m_1}^{\text{Gluon}\$1} \mathbb{T}_{m_3,m_4}^{\text{Gluon}\$1} \right)$
	$\left\{\left\{\texttt{sq1}^{\dagger},1\right\},\left\{\texttt{sq1}^{\dagger},2\right\},\left\{\texttt{sq2},3\right\},\left\{\texttt{sq2},4\right\}\right\}$	$-igs^2Sin[2theta]^{2}\left(\mathtt{T}^{Gluon\$1}_{\mathtt{m}_1,\mathtt{m}_4}\mathtt{T}^{Gluon\$1}_{\mathtt{m}_2,\mathtt{m}_3}+\mathtt{T}^{Gluon\$1}_{\mathtt{m}_1,\mathtt{m}_3}\mathtt{T}^{Gluon\$1}_{\mathtt{m}_2,\mathtt{m}_4}\right)$
	$\left\{\{\mathtt{sq1, 1}\}, \{\mathtt{sq1, 2}\}, \{\mathtt{sq1^{\dagger}, 3}\}, \{\mathtt{sq2^{\dagger}, 4}\}\right\}$	$\frac{1}{2} \text{ i gs}^2 \text{ Sin} [4 \text{ theta}] \left(\mathbb{T}_{m_3,m_2}^{\text{Gluon}\$1} \mathbb{T}_{m_4,m_1}^{\text{Gluon}\$1} + \mathbb{T}_{m_3,m_1}^{\text{Gluon}\$1} \mathbb{T}_{m_4,m_2}^{\text{Gluon}\$1} \right)$
	$\{\{sq1, 1\}, \{sq1^{\dagger}, 2\}, \{sq2, 3\}, \{sq2^{\dagger}, 4\}\}$	$-igs^{2}\left(\text{Sin}[2\text{theta}]^{2}\mathtt{T}^{\text{Gluon}\$1}_{m_{2},m_{3}}\mathtt{T}^{\text{Gluon}\$1}_{m_{4},m_{1}}-\text{Cos}[2\text{theta}]^{2}\mathtt{T}^{\text{Gluon}\$1}_{m_{2},m_{1}}\mathtt{T}^{\text{Gluon}\$1}_{m_{4},m_{3}}\right)$
	$\left\{\left\{\texttt{sq1}^{\dagger},1\right\},\left\{\texttt{sq2},2\right\},\left\{\texttt{sq2},3\right\},\left\{\texttt{sq2}^{\dagger},4\right\}\right\}$	$-\frac{1}{2} \text{ igs}^2 \text{ Sin} [4 \text{ theta}] \left(T_{m_1,m_3}^{\text{Gluon}\$1} T_{m_4,m_2}^{\text{Gluon}\$1} + T_{m_1,m_2}^{\text{Gluon}\$1} T_{m_4,m_3}^{\text{Gluon}\$1} \right)$
	$\{\{sq1, 1\}, \{sq1, 2\}, \{sq2^{\dagger}, 3\}, \{sq2^{\dagger}, 4\}\}$	$- \text{igs}^2 \operatorname{Sin}[2 \text{ theta}]^2 \left(\mathbb{T}^{\operatorname{Gluon}\$1}_{\operatorname{m_3},\operatorname{m_2}} \mathbb{T}^{\operatorname{Gluon}\$1}_{\operatorname{m_4},\operatorname{m_1}} + \mathbb{T}^{\operatorname{Gluon}\$1}_{\operatorname{m_3},\operatorname{m_1}} \mathbb{T}^{\operatorname{Gluon}\$1}_{\operatorname{m_4},\operatorname{m_2}} \right)$
	$\left\{ \{ sq1, 1 \}, \{ sq2, 2 \}, \{ sq2^{\dagger}, 3 \}, \{ sq2^{\dagger}, 4 \} \right\}$	$-\frac{1}{2} \text{ igs}^2 \text{ Sin} [4 \text{ theta}] \left(\mathbb{T}_{m_3,m_2}^{\text{Gluon}\$1} \mathbb{T}_{m_4,m_1}^{\text{Gluon}\$1} + \mathbb{T}_{m_3,m_1}^{\text{Gluon}\$1} \mathbb{T}_{m_4,m_2}^{\text{Gluon}\$1} \right)$
	$\{\{sq2, 1\}, \{sq2, 2\}, \{sq2^{\dagger}, 3\}, \{sq2^{\dagger}, 4\}\}$	$-i gs^2 Cos [2 theta]^2 (T_{m_3,m_2}^{Gluon\$1} T_{m_4,m_1}^{Gluon\$1} + T_{m_3,m_1}^{Gluon\$1} T_{m_4,m_2}^{Gluon\$1})$

• All nine vertices automatically derived from the (very compact) Lagrangian

SUSY-gauge squark-quark-gluino couplings

The SUSY gauge gluino-quark-squark interactions (in the gauge basis)

$$\mathcal{L}_{\text{matter}} = \sqrt{2}g_s \left[-\tilde{q}_L^{\dagger} T^a (\bar{\tilde{g}}^a P_L q) + (\bar{q} P_L \tilde{g}^a) T^a \tilde{q}_R \right] + \text{h.c.}$$

The FEYNRULES again following the textbook expression

```
Lgosqq := Sqrt[2] gs ProjM[s1,s2] * (

- sqLbar[cc1] T[a,cc1,cc2] gobar[s1,a].q[s2,cc2] +

qbar[s1,cc1].go[s2,a] T[a,cc1,cc2] sqR[cc2]);
```

- All indices explicit (scalars not included in fermion chains)
- *ProjM* = left-handed chirality projector (*ProjP* right-handed)
- The dot connects the elements of a fermion chain
 * Remark: ProjM(s1,s2) is a scalar object

Feynman rules from the D-terms

The SUSY gauge gluino-quark-squark interactions (in the gauge basis)

$$\mathcal{L}_{\text{matter}} = \sqrt{2}g_s \left[-\tilde{q}_L^{\dagger} T^a \left(\bar{\tilde{g}}^a P_L q \right) + \left(\bar{q} P_L \tilde{g}^a \right) T^a \tilde{q}_R \right] + \text{h.c.}$$

Feynman rules computation

Including the Hermitian conjugate pieces with HC

```
In[19]:= Simplify[FeynmanRules[Lgosqq + HC[Lgosqq]]] // MatrixForm
```

```
Starting Feynman rule calculation.
```

Expanding the Lagrangian...

Collecting the different structures that enter the vertex.

- 4 possible non-zero vertices have been found -> starting the computation: 4 / 4.
- 4 vertices obtained.

Out[19]//MatrixForm=

$$\left\{ \left\{ \bar{q}, 1 \right\}, \left\{ go, 2 \right\}, \left\{ sq1, 3 \right\} \right\} - i\sqrt{2} gs \left(Cos[theta] P_{+s_1,s_2} - P_{-s_1,s_2} Sin[theta] \right) T_{m_1,m_3}^{a_2} \\ \left\{ \left\{ go, 1 \right\}, \left\{ q, 2 \right\}, \left\{ sq1^{\dagger}, 3 \right\} \right\} - i\sqrt{2} gs \left(Cos[theta] P_{-s_1,s_2} - P_{+s_1,s_2} Sin[theta] \right) T_{m_3,m_2}^{a_1} \\ \left\{ \left\{ \bar{q}, 1 \right\}, \left\{ go, 2 \right\}, \left\{ sq2, 3 \right\} \right\} i\sqrt{2} gs \left(Cos[theta] P_{-s_1,s_2} + P_{+s_1,s_2} Sin[theta] \right) T_{m_1,m_3}^{a_2} \\ \left\{ \left\{ go, 1 \right\}, \left\{ q, 2 \right\}, \left\{ sq2^{\dagger}, 3 \right\} \right\} i\sqrt{2} gs \left(Cos[theta] P_{+s_1,s_2} + P_{-s_1,s_2} Sin[theta] \right) T_{m_3,m_2}^{a_1} \\ \left\{ \left\{ go, 1 \right\}, \left\{ q, 2 \right\}, \left\{ sq2^{\dagger}, 3 \right\} \right\} i\sqrt{2} gs \left(Cos[theta] P_{+s_1,s_2} + P_{-s_1,s_2} Sin[theta] \right) T_{m_3,m_2}^{a_1} \right\}$$

FEYNRULES in a nutshell	Model implementation	Using FEYNRULES	Summary	Advanced techniques

To phenomenology

From FEYNRULES to phenomenology

The SUSY-QCD model has been implemented into FEYNRULES

```
LMatter := Lkin + LD + Lgosqq + HC[Lgosqq];
```

LSUSYQCD := LVector1 + LMatter;

The Feynman rules have been extracted (and checked)

Ready to export the model to MC tools

- CALCHEP / COMPHEP
- FEYNARTS / FORMCALC
- UFO: MADGRAPH5_AMC@NLO / SHERPA / HERWIG++ / WHIZARD

```
WriteCHOutput[{LVector1, LMatter}];
WriteFeynArtsOutput[{LVector1, LMatter}];
WriteUF0[{LVector1, LMatter}];
```

Limitations and fineprints

Particle / parameter names

- The strong interaction has a special role
 - * Name for the gluon field, the coupling constant, etc.
 - \star Which parameter is internal/external
 - **\star** The numerical value of α_s at the Z-pole
- For some generators, the electroweak interaction has also a special role
 - \star Name for the Fermi coupling, the Z-boson mass
 - \star Which parameter is external/internal
 - \star At which scale must the numerical values be given

Colour structures: up to octets in FEYNRULES, not in MC generators

Interfaces discard non-supported vertices

Lorentz structures/spins: up to spin-2 in FEYNRULES, not in MC generators

Interfaces discard non-supported vertices

Outline

2. Implementing supersymmetric QCD in FEYNRULES

3. Using FEYNRULES with supersymmetric QCD model

4. Summary

5. Appendix: advanced model implementation techniques

New physics made easy with FEYNRULES

Advanced techniques

- More about UFOs
- Extension / restriction of existing models
- The superspace module of FEYNRULES
- Mass diagonalisation
- Two-body decays
- Next-to-leading order module

The quest for new physics at the LHC

- Relies on event generators for background and signal modelling
- FEYNRULES facilitates the implementation of new physics models

FEYNRULES: http://feynrules.irmp.ucl.ac.be

- Straightforward implementation of new physics model in Monte Carlo tools
 - \star Interfaces to many programs
- FEYNRULES shipped with its own computational modules
 - ***** A superspace module
 - ★ A decay package
 - * A mass diagonalisation module (ASPERGE)
 - ★ An NLO module

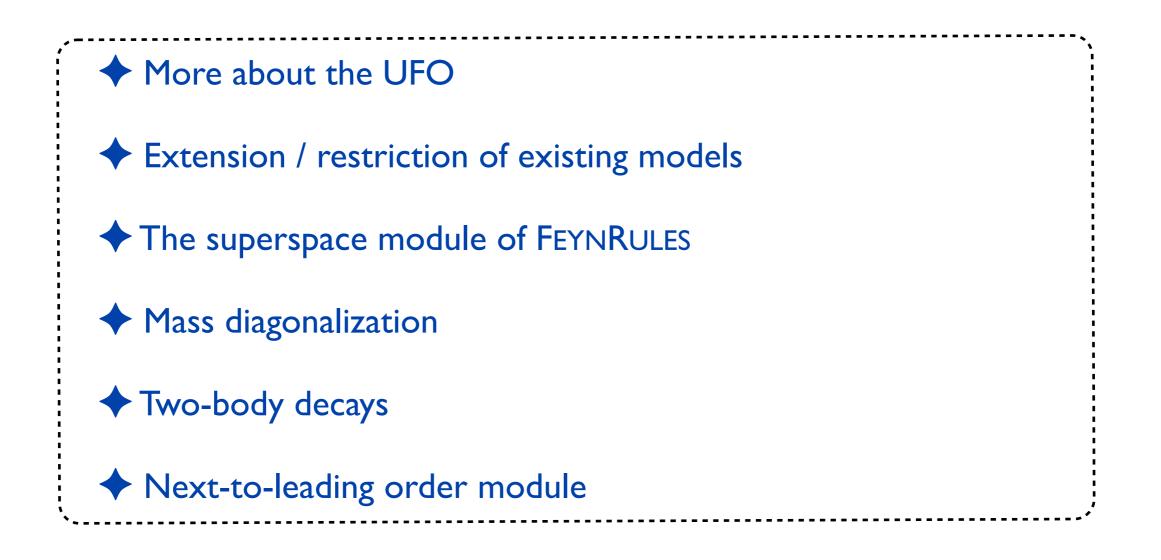
Try it on with your favorite model!

2. Implementing supersymmetric QCD in FEYNRULES

3. Using FEYNRULES with supersymmetric QCD model

5. Appendix: advanced model implementation techniques

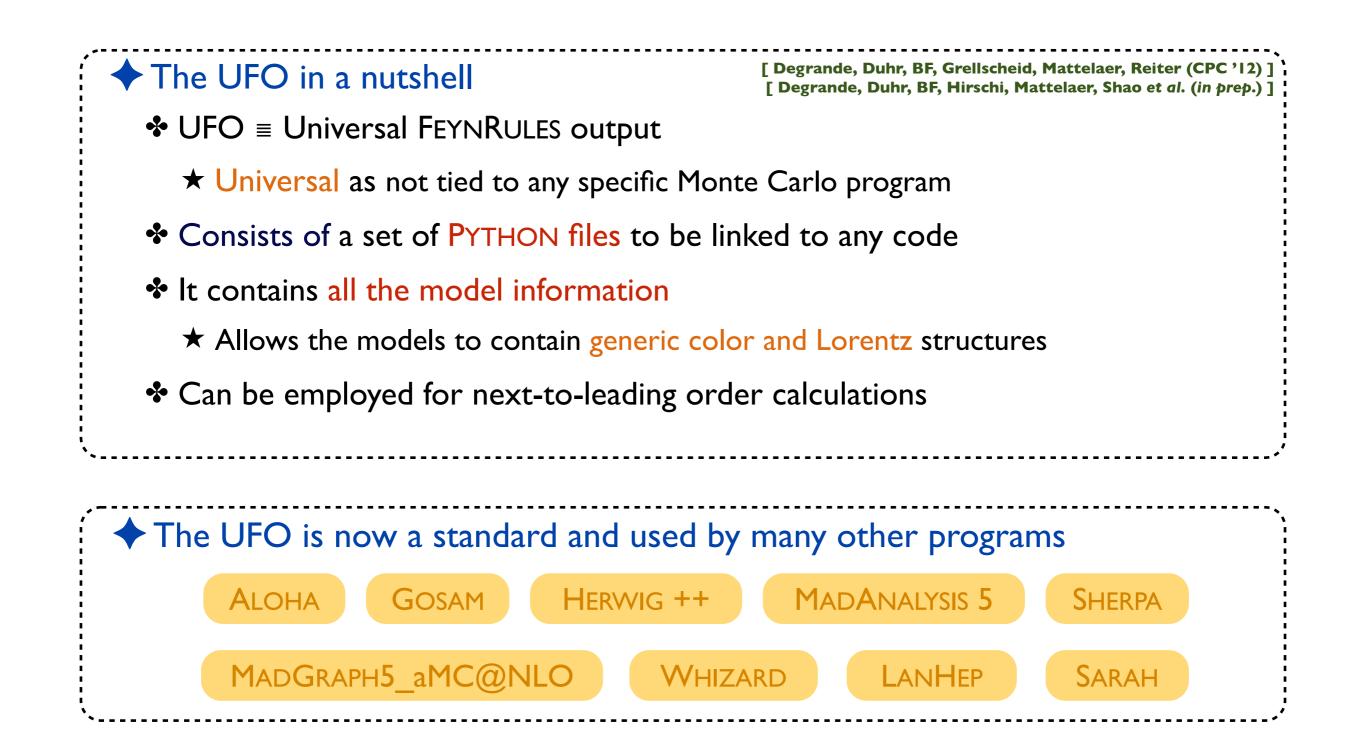
Advanced techniques for FEYNRULES implementation



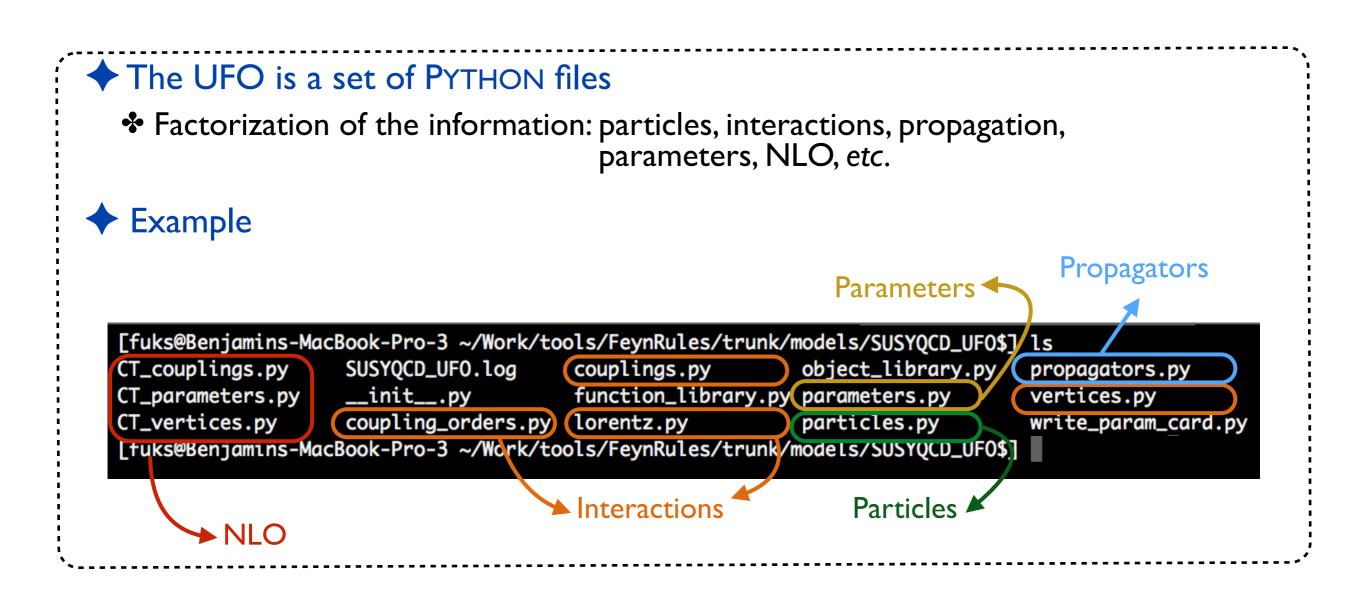
FEYNRULES in a nutshell	Model implementation	Using FEYNRULES	Summary	Advanced techniques

The UFO

A step further: the Universal FEYNRULES Output



The UFO in practice



Using FEYNRULES

Summary

Advanced techniques

Particles

```
Particles are stored in the particles.py file
   Instances of the particle class
   * Attributes: particle spin, color representation, mass, width, PDG code, etc.
   Antiparticles automatically derived
                                                                                 q = Particle(pdg_code = 6,
                                        sq1 = Particle(pdg_code = 1000006,
 G = Particle(pdg_code = 21,
                                                                                             name = 'q',
                                                       name = 'sq1',
              name = 'G',
                                                                                              antiname = 'q \sim',
                                                       antiname = 'sq1~',
              antiname = 'G',
                                                                                              spin = 2,
                                                       spin = 1,
               spin = 3,
                                                                                              color = 3,
                                                       color = 3,
              color = 8,
                                                                                              mass = Param.Mq,
                                                       mass = Param.Msg1,
              mass = Param.ZERO,
                                                                                             width = Param.Wq,
                                                       width = Param.Wsq1,
              width = Param.ZERO,
                                                                                             texname = 'q',
                                                       texname = 'sq1',
              texname = 'G',
                                                                                              antitexname = 'q \sim',
                                                       antitexname = 'sq1~',
              antitexname = 'G',
                                                                                             charge = 0)
                                                       charge = 0)
              charge = 0)
                                                                                 q_tilde__ = q.anti()
                                        sq1__tilde__ = sq1.anti()
 go = Particle(pdg_code = 1000021,
                name = 'qo',
                                        sq2 = Particle(pdg_code = 2000006,
                antiname = 'qo',
                                                       name = 'sq2',
                spin = 2,
                                                       antiname = sq2\sim',
                color = 8,
                                                       spin = 1,
                mass = Param.Mgo,
                                                       color = 3,
               width = Param.Wgo,
                                                       mass = Param.Msq2,
               texname = 'go',
                                                       width = Param.Wsq2,
                antitexname = 'go',
                                                       texname = 'sq2',
                charge = 0)
                                                       antitexname = 'sq2~',
                                                       charge = 0)
                                        sq2__tilde__ = sq2.anti()
```

Using FEYNRULES

Parameters

```
Parameters are stored in the parameters.py file
  Instances of the parameter class
  External parameters are organized following a Les Houches-like structure
     (blocks and counters)
  PYTHON-compliant formula for the internal parameters
    aS = Parameter(name = 'aS',
                                                                  Mgo = Parameter(name = 'Mgo',
                 nature = 'external',
                                                                                 nature = 'external',
                 type = 'real',
                                                                                 type = 'real',
                 value = 0.1184,
                                                                                 value = 500,
                 texname = '\\alpha _s',
                                                                                 texname = '\\text{Mgo}',
                 lhablock = 'SMINPUTS',
                                                                                 lhablock = 'MASS',
                 lhacode = [3]
                                                                                 lhacode = [1000021])
    G = Parameter(name = 'G')
                                                                   Wq = Parameter(name = 'Wq',
                 nature = 'internal',
                                                                                 nature = 'external',
                 type = 'real',
                                                                                 type = 'real',
                 value = '2*cmath.sqrt(aS)*cmath.sqrt(cmath.pi)',
                                                                                 value = 1.50833649,
                 texname = 'G')
                                                                                 texname = '\\text{Wq}',
                                                                                 lhablock = 'DECAY',
                                                                                 lhacode = [6]
```

Interactions: generalities

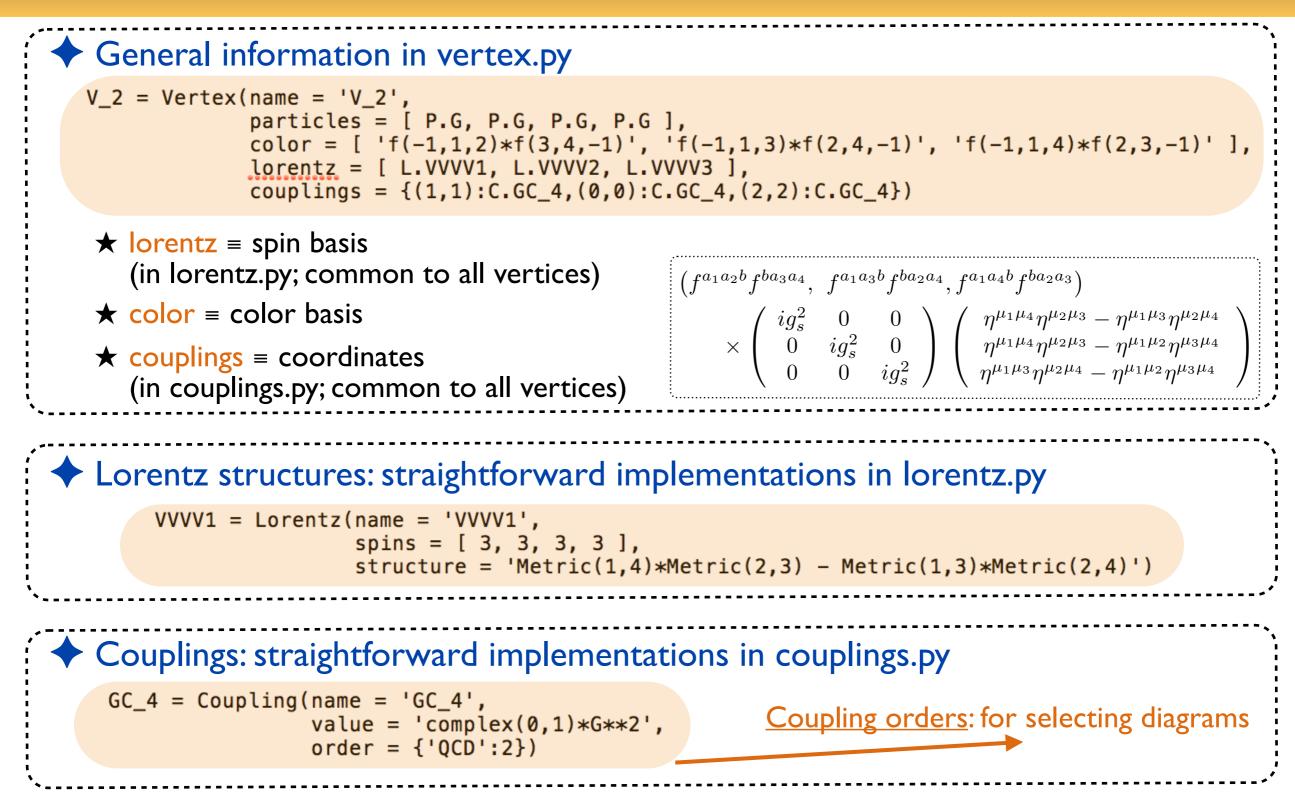
Vertices decomposed in a spin x color basis (coupling strengths = coordinates)
 Example: the quartic gluon vertex can be written as

$ig_s^2 f^{a_1 a_2 b} f^{b a_3 a_4} \left(\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \right)$		$(f^{a_1a_2b}f^{ba_3a_4}, f^{a_1a_3b}f^{ba_2a_4}, f^{a_1a_4b}f^{ba_2a_3})$
$ + ig_s^2 f^{a_1 a_3 b} f^{b a_2 a_4} \left(\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \right) = + ig_s^2 f^{a_1 a_4 b} f^{b a_2 a_3} \left(\eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \right) $	⇒	$\times \left(\begin{array}{ccc} ig_s^2 & 0 & 0\\ 0 & ig_s^2 & 0\\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} \eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4}\\ \eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4}\\ \eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4} \end{array}\right)$
		$\begin{pmatrix} 0 & 0 & ig_s^2 \end{pmatrix} \langle \eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4} - \eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4} \end{pmatrix}$

- \star 3 elements for the color basis
- \star 3 elements for the spin (Lorentz structure) basis
- ★ 9 coordinates (6 are zero)

Several files are used for the storage of the information

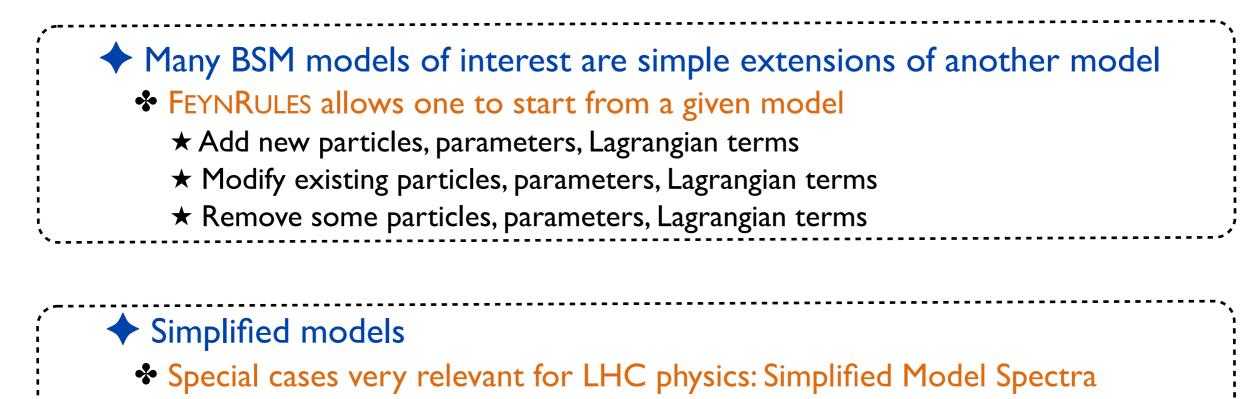
Example: the quartic gluon vertex



FEYNRULES in a nutshell	Model implementation	Using FEYNRULES	Summary	Advanced techniques

Extending models

Merging and extending models (I)



- ★ The Standard Model + one or two new particles
- \star Often inspired by the MSSM or dark matter models
- \star Ex.: the SM + lightest stop and neutralino + relevant subset of MSSM interactions

Merging and extending models (2)

```
    Merged FEYNRULES model contains two .fr files
    The parent model implementation
    One extra file with the modifications
    They must be loaded together (the parent model first)
    LoadModel["SM.fr", "stops.fr"];
    No need to re-implement what is common (gauge groups, etc.)
```

One can start from the models available on the FEYNRULES database http://feynrules.irmp.ucl.ac.be

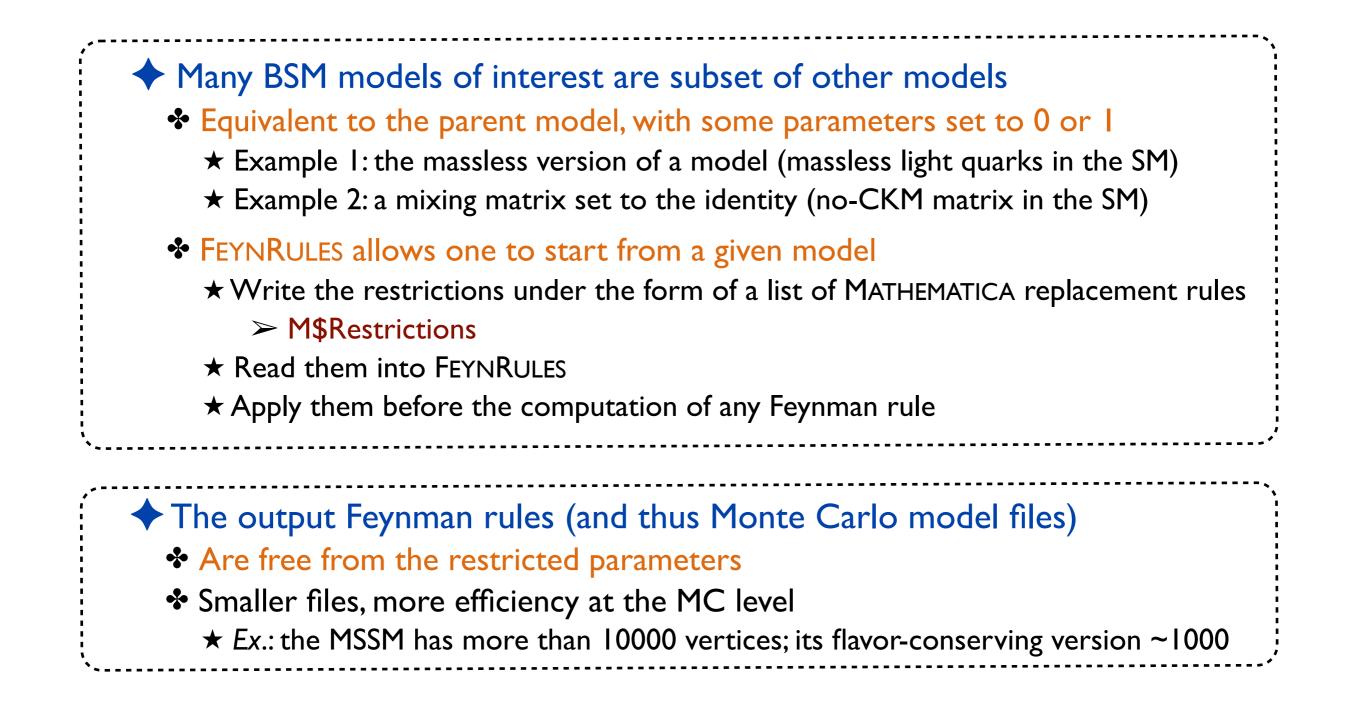
The FEYNRULES model database

- \bullet O(100) models are available online
 - Simple extensions of the Standard Model
 - \star Simplified model spectra
 - ★ Four generation models
 - ★ Vector-like quarks
 - ★ Two-Higgs-Doublet Models, Hidden Abelian Higgs

 \star etc.

- Supersymmetric models
 - ★ MSSM with and without R-parity
 - ★ The NMSSM
 - ★ R-symmetric supersymmetric models
 - ★ Left-right supersymmetric models
- Extra-dimensional models
 - ★ Universal extra-dimensions
 - ★ Large extra-dimensions
 - ★ Heidi, Minimal Higgsless models
 - \star Randall-Sundrum
- Strongly coupled and effective field theories
 - \star Technicolor
 - * Models with dimension-six and dimension-eight operators
 - \star etc.

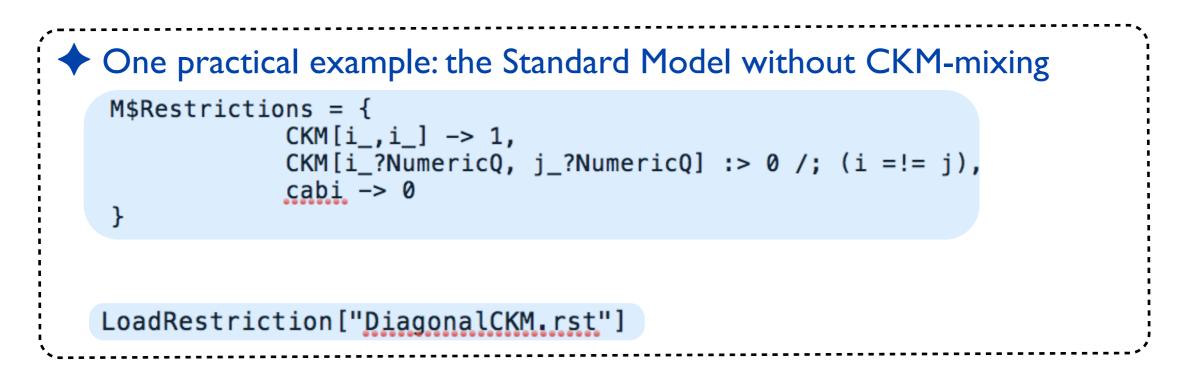
Restricting model implementations



Summary

Advanced techniques

Example of restrictions



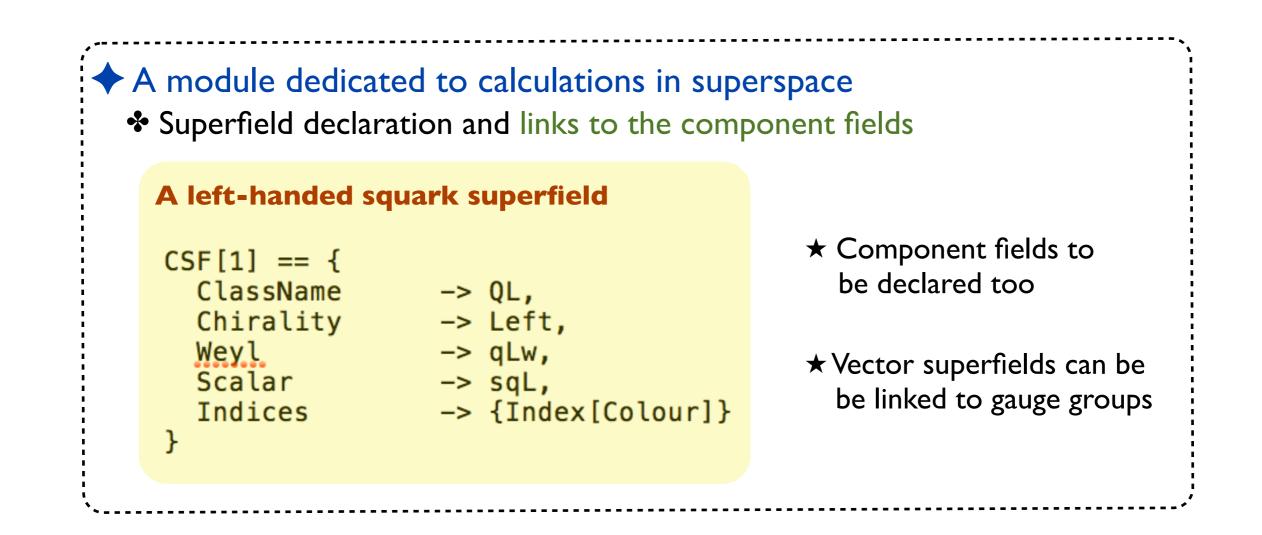
Superspace module

See the manual for more details on the superspace module

Summary

Advanced techniques

Superfield declaration



Supersymmetric model implementation

- Supersymmetric model implementation
 - Declaration of the model gauge group
 - Declaration of all fields <u>and</u> superfields
 - Declaration of all model parameters
 - Writing the Lagrangian (in a simplified way)

Supersymmetric Lagrangian in superspace are very compact

$$\mathcal{L} = \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^2\bar{\theta}^2}} + \frac{1}{16g^2\tau_{\mathcal{R}}} \operatorname{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^2}} + \frac{1}{16g^2\tau_{\mathcal{R}}} \operatorname{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^2}} + W(\Phi)_{|_{\theta^2}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^2}} + \mathcal{L}_{\text{soft}}$$

First line: kinetic and gauge interaction terms for all fields

 \succ Model independent \Rightarrow can be automated

Second line: superpotential and supersymmetry breaking Lagrangian

> Model dependent \Rightarrow to be provided

- Series expansion in terms of component fields
- Automatic derivation of supersymmetric Lagrangians
- Solving the equations of motion of the unphysical fields

Implementing supersymmetric Lagrangians

Supersymmetric Lagrangian in superspace are very compact

$$\mathcal{L} = \Phi^{\dagger} e^{-2gV} \Phi_{|_{\theta^2\bar{\theta}^2}} + \frac{1}{16g^2\tau_{\mathcal{R}}} \operatorname{Tr}(W^{\alpha}W_{\alpha})_{|_{\theta^2}} + \frac{1}{16g^2\tau_{\mathcal{R}}} \operatorname{Tr}(\bar{W}_{\dot{\alpha}}\bar{W}^{\dot{\alpha}})_{|_{\bar{\theta}^2}} + W(\Phi)_{|_{\theta^2}} + W^{\star}(\Phi^{\dagger})_{|_{\bar{\theta}^2}} + \mathcal{L}_{\text{soft}}$$

◆ First line: kinetic and gauge interaction terms for all fields
 ★ Model independent ⇒ can be automated (CSFKineticTerms / VSFKineticTerms)
 ★ Dedicated methods to access the components of a superfield (Theta2Component, etc.)

Second line: superpotential and supersymmetry-breaking terms

\star Model dependent \Rightarrow to be provided by the user (SuperW and LSoft)

Lag = Theta2Thetabar2Component[CSFKineticTerms[]] +
Theta2Component[VSFKineticTerms[]] +
Thetabar2Component[VSFKineticTerms[]];

Lag2 = LSoft + Theta2Component[SuperW] + Thetabar2Component[SuperW];

Implementing supersymmetric Lagrangians

The implemented Lagrangian above must be post-processed

Lag = Theta2Thetabar2Component[CSFKineticTerms[]] +
 Theta2Component[VSFKineticTerms[]] +
 Thetabar2Component[VSFKineticTerms[]];

Lag2 = LSoft + Theta2Component[SuperW] + Thetabar2Component[SuperW];

- Solving the equation of motion for the auxiliary fields
- Inserting the solution back into the Lagrangian
 Automated (SolveEqMotionF and SolveEqMotionD)
- Replacement of Weyl spinors in terms of Majorana and Dirac spinors
 ★Automated (WeylToDirac)
- Rotation to the mass basis
 Standard FEYNRULES function (ExpandIndices)

Mass matrix diagonalization

See the manual for more details on the ASPERGE module

Mass matrices and their diagonalization

The problematics of the mass matrices Lagrangians are usually easily written in the gauge basis The included mass matrices are thus in general non-diagonal diagonalization required The gauge basis must be rotated to the mass basis where the mass matrices are diagonal This diagonalization cannot in general be achieved analytically

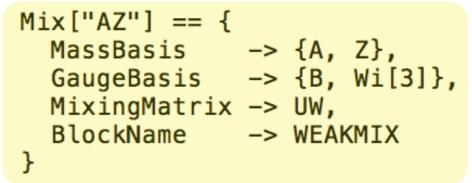
The ASPERGE package of FEYNRULES

- A module allowing one to extract the mass matrices from the Lagrangian
- * A generator of C++ code > numerical diagonalization of all mass matrices (the generated code can be used in a standalone way)
- See: Alloul, D'Hondt, De Causmaecker, BF, Rausch de Traubenberg [EPJC 73 (2013) 2325]

Example of the Z-boson/photon mixing

- Example: the Z-boson and photon in the Standard Model
 - Each mixing is declared as a set of replacement rules (in M\$MixingsDescription)
 - Each rule represent a property of the mixing relation

$$\begin{pmatrix} A_{\mu} \\ Z_{\mu} \end{pmatrix} = U_w \begin{pmatrix} B_{\mu} \\ W_{\mu}^3 \end{pmatrix} \implies$$



ASPERGE can compute the mass matrices:

ASPERGE can generate its standalone C++ version

```
ComputeMassMatrix[Lag];
WriteASperGe[Lag];
```

Decays

See the manual for more details on the decay module

Two-body decays

The problematics of the decay widths and branching ratios
Some MC tools need decay tables (widths and branching ratios) to decay particles
Widths and branching ratios are not independent quantities
\succ need to be calculated
Some Monte Carlo tools compute these quantities on the fly
\succ the procedure is repeated each time it is needed
FEYNRULES offers a way to include analytical information on the two-body decay
 Widths and branching ratios are not independent quantities need to be calculated Some Monte Carlo tools compute these quantities on the fly the procedure is repeated each time it is needed

Two-body decays

Two-body decays in general

* Two-body decays can be directly read from three-point vertices (\mathcal{V})

$$\Gamma_{1\to2} = \frac{1}{2|M|S} \int \mathrm{d}\Phi_N \, |\mathcal{M}_{1\to2}|^2 = \frac{\sqrt{\lambda(M^2, m_1^2, m_2^2)}}{16 \,\pi \, S \, |M|^3} \mathcal{V}_{\ell_1 \ell_2 \ell_3}^{a_1 a_2 a_3} \, \mathcal{P}_1^{\ell_1 \ell_1'} \, \mathcal{P}_2^{\ell_2 \ell_2'} \, \mathcal{P}_3^{\ell_3 \ell_3'} \, (\mathcal{V}^*)_{\ell_1' \ell_2' \ell_3'}^{a_1 a_2 a_3}$$

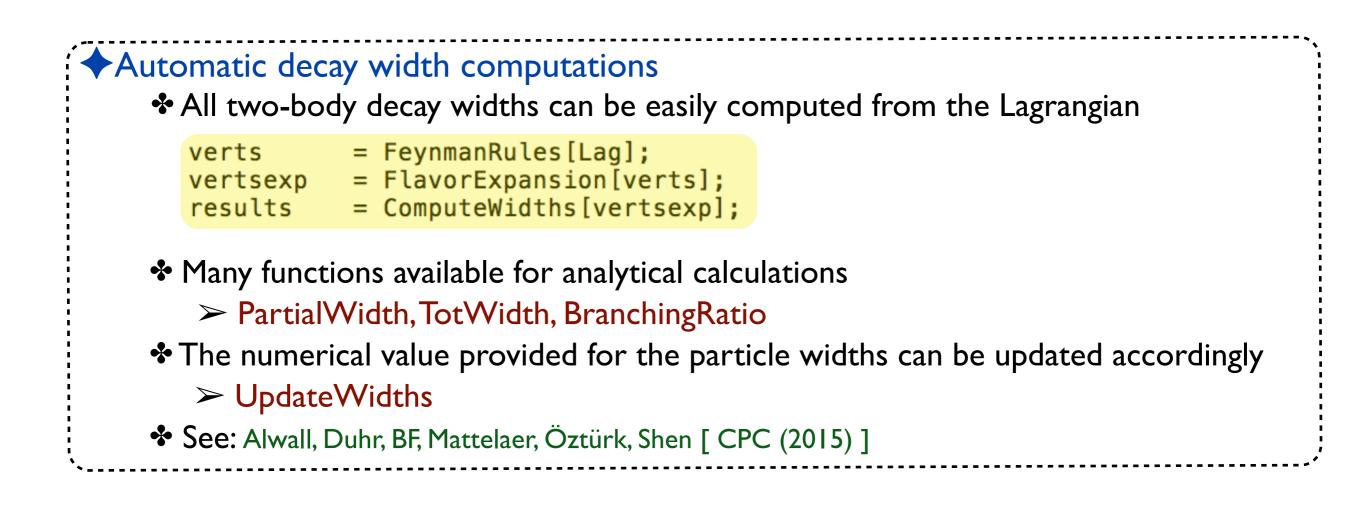
 \star Partial width for the decay of a particle of mass M to two particles of masses m₁ and m₂

 \star Includes a symmetry factor S and ${\cal P}$ denotes the polarization tensor of each particle

The decay module of FEYNRULES

- FEYNRULES makes use of MATHEMATICA to compute all partial widths of the model
 Ignores open and closed channels >> benchmark independent
 - **★** The information is exported to the UFO (used, e.g, by MADWIDTH)

Running the decay module of FEYNRULES



Snippet of the UFO output

	information is (by default) employed by the UFO interface
•	Can be turned of: (AddDecays → False)
•*•	The UFO contains an extra file decays.py
	This file can be used by MC codes
	Example of the Standard Model UFO: the top quark
~	Example of the Standard Model OFO, the top quark
cay_t = D	ecay(name = 'Decay_t', particle = P.t,
kCKM3x1∗e	<pre>partial_widths = {(P.Wplus,P.d):'((MT**2 - MW**2)*((3*CKM3x1*ee**2*MT**2*complexconjugate(CKM3x1))/(2.*sw**2) + e**2*MT**4*complexconjugate(CKM3x1))/(2.*MW**2*sw**2) - (3*CKM3x1*ee**2*MW**2*complexconjugate(CKM3x1))/sw**2))/</pre>
	pi*abs(MT)**3)', (P.Wplus,P.s):'((MT**2 - MW**2)*((3*CKM3x2*ee**2*MT**2*complexconjugate(CKM3x2))/(2.*sw**2) +
kCKM3x2*e	e**2*MT**4*complexconjugate(CKM3x2))/(2.*MW**2*sw**2) - (3*CKM3x2*ee**2*MW**2*complexconjugate(CKM3x2))/sw**2))/
	<pre>pixabs(MT)**5) ,</pre>
6.∗cmath.	
6.*cmath. *CKM3x3*e *CKM3x3*e	<pre>e**2*MT**2*complexconjugate(CKM3x3))/(2.*sw**2) + (3*CKM3x3*ee**2*MB**4*complexconjugate(CKM3x3))/(2.*MW**2*sw**2) - e**2*MB**2*MT**2*complexconjugate(CKM3x3))/(MW**2*sw**2) + (3*CKM3x3*ee**2*MT**4*complexconjugate(CKM3x3))/(2.*MW**2*sw**2) e**2*MW**2*complexconjugate(CKM3x3))/sw**2)*cmath.sqrt(MB**4 - 2*MB**2*MT**2 + MT**4 - 2*MB**2*MW**2 - 2*MT**2*MW**2 +</pre>

ced techniques

NLO

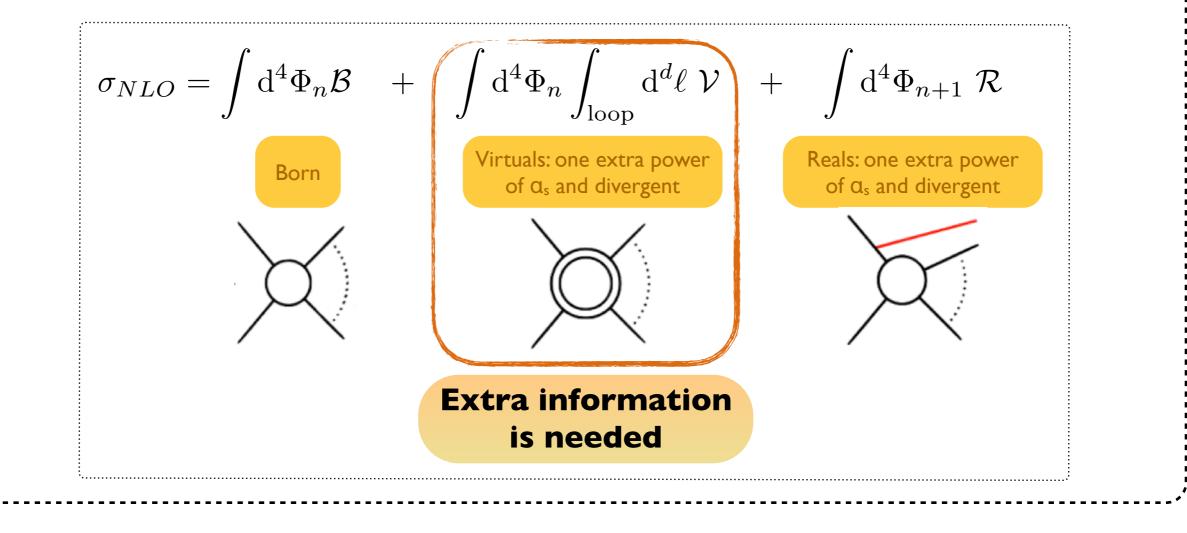
Higher-order corrections (in QCD)

NLO calculations matched to parton shower (for BSM) are automated
 Model-dependent parts of calculations (on top of the tree-level information)
 Counterterms
 Finite pieces of the loop-integrals
 Finite pieces of the loop-integrals
 Model independent contributions
 Subtraction of the divergences
 Matching to the parton showers

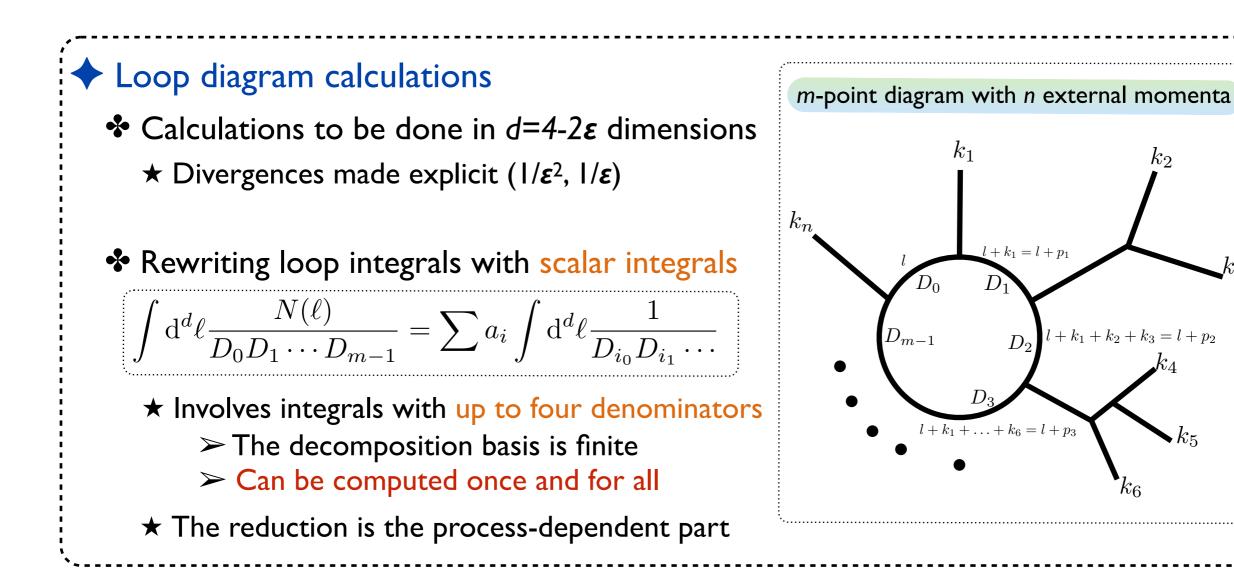
Recap' on NLO calculations

Contributions to an NLO result in QCD

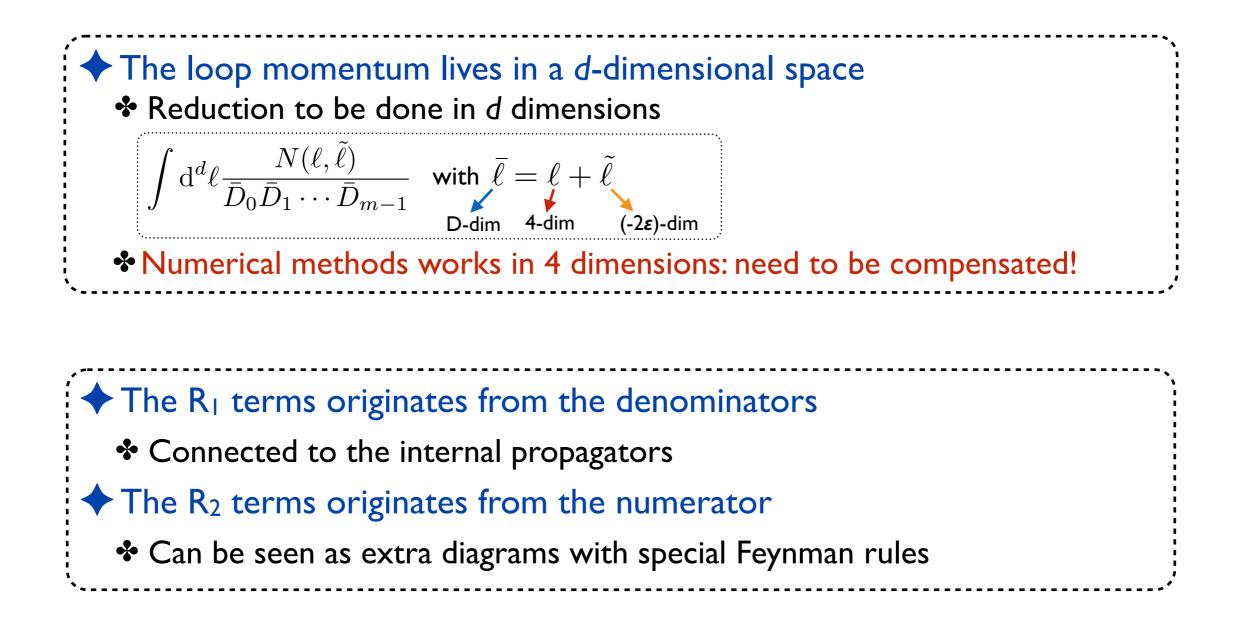
* Three ingredients: the Born, virtual loop and real emission contributions

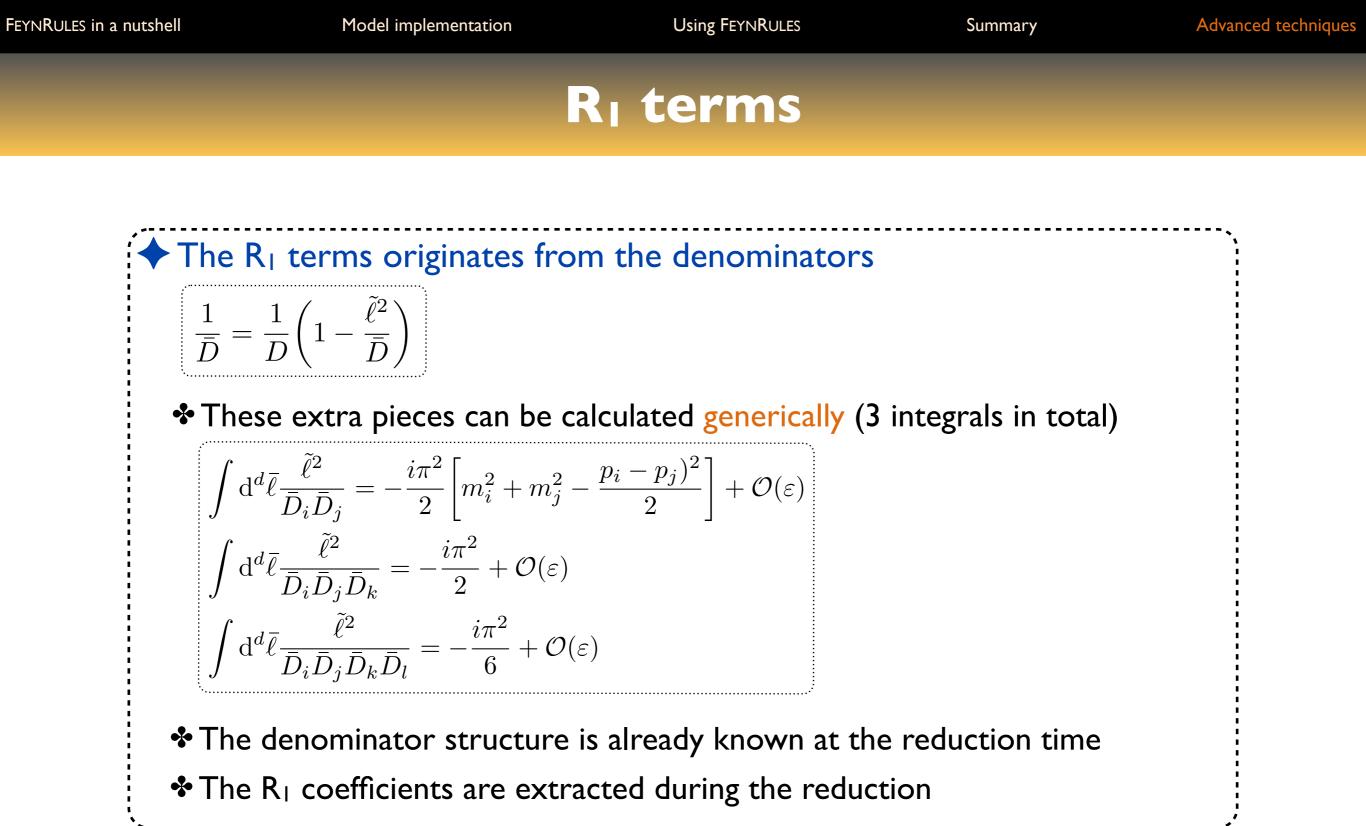


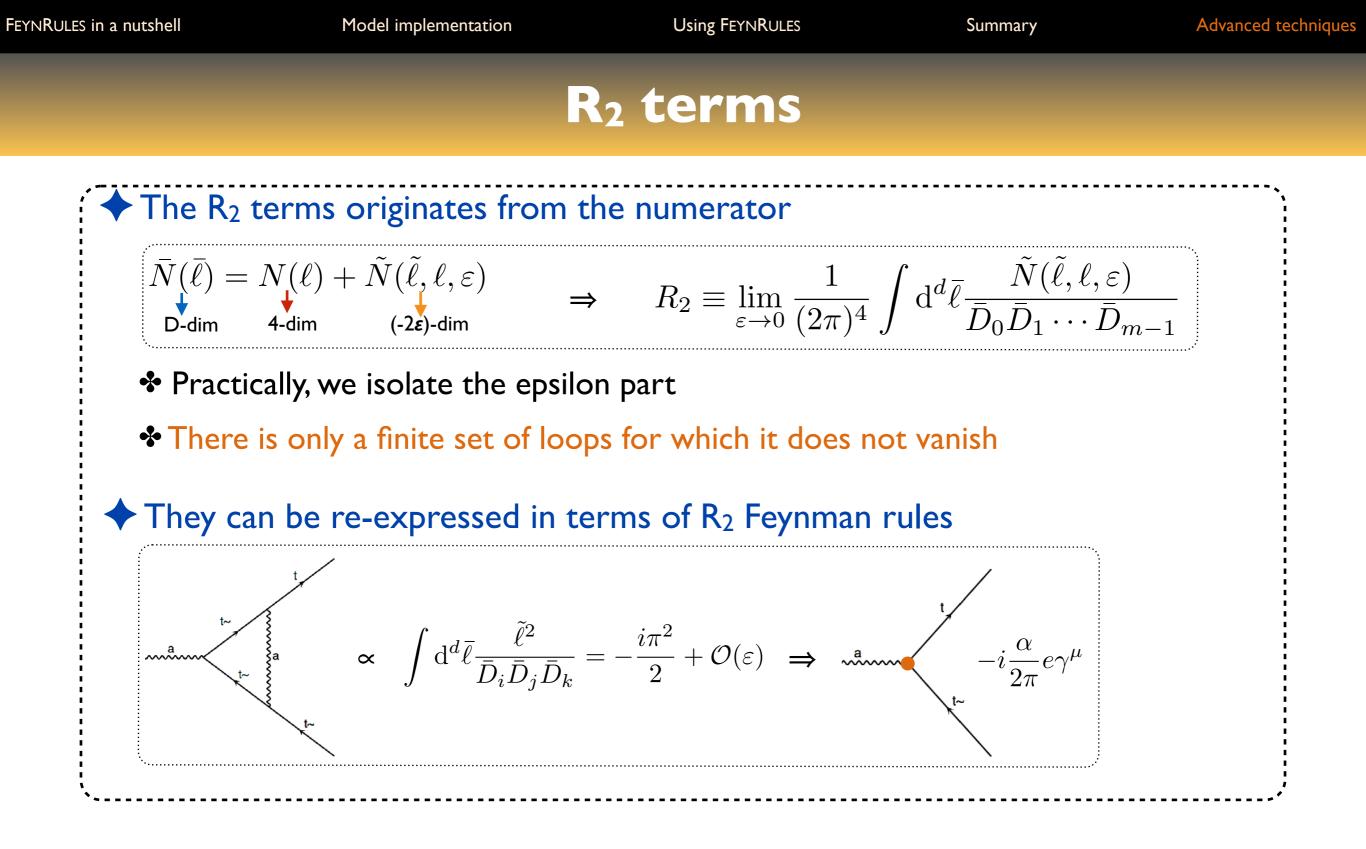
Virtual contributions



The rational terms (R₁ and R₂)







R₂ Feynman rules

The R₂ are process dependent and model-dependent (like Feynman rules)
 In a renormalizable theory, there is a finite number of them
 They can be derived from the sole knowledge of the bare Lagrangian
 [Ossala, Papadopoulos, Pittau (JHEP'08)]

The R₂ calculation can be automated and performed once and for all
 Development of the NLOCT package (extension of FEYNRULES)
 Computation, for any model, of all R₂ and UV counterterms

 In the on-shell and MSbar schemes
 Inclusion of the output in the UFO

Automated NLO simulations with MG5_AMC

