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Kind of measurement
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Theory needed only for

measured from data.

parameter extraction
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Background SHAPE needed.
Flexible MC for both signal
and background validated and
tuned to data
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Relies on prediction for both
shape and normalization.
Complicated interplay of best
simulations and data
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Theory side
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« This is Where
the new idea
are expressed

/ Feynman Rule \
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- What is the
precision?
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(Our goal
Cross-section

Differential cross-section
Un-weighted events
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Simulation of collider events

Simulation of collider events




What are the MC for?
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What are the MC for?
Soales |

cales | H|gh_Q2 Scattering 2 Parton Shower
TeV = where BSM physics lies
.b.._.,’ Bl
oollce e
GeV
= process dependent
== first principles description
¥ it can be systematically improved
+ MeV o :
\_/ 3. Hadronization 4. Underlying Event
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cales

TeV

GeV

MeV
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What are the MC for?

|. High-Q Scattering 2. Parton Shower
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= QCD -"known physics”
& universal/ process independent
% first principles description

3. Hadronization 4. Underlying Event



What are the MC for?

m |.High-Q Scattering . - f o g0, 2. Parton Shower
Scales ve Neole/flfe M ol 0
VoL €GeS 08, el
.».‘ ® .L-:. 'l.u ‘. f‘r. ’ [ ]
o ‘A 0 e - = V4
-‘f .'n- \ “ll = \\ (: ..«'
o~ --:"x a - N \ S ':"'- .:.-
TeV N R Yoo
® N ®. I - '.:=
. ®- i -@® -
..33‘
= '*.“ﬁ ‘0 9, %
SR ).
— .-
:* 9 o O- . ' @ se
250\ S

e 5
cev ng‘ = |ow Q2 physics jE:‘E

= universal/ process independent

= model-based description

MeV
U 3. Hadronization ! 4. Underlying Event




What are the MC for?

p |. High-Q Scattering 2. Parton Shower

cales

TeV

2 .
% low Q physics
&= energy and process dependent

= model-based description
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What are the MC for?




To Remember

/

 Multi-scale problem
= New physics visible only at High scale
= Problem split in different scale
O Factorisation theorem




MASTER FORMULA FOR THE LHC

5-a,b—>X (§7 HF, /LR)

Parton-level cross
section




Perturbative expansion

d6ap—x (S, up, tr) Parton-level cross section

- The parton-level cross section can be computed as a
series in perturbation theory, using the coupling
constant as an expansion parameter, schematically:

3
A Born s (1) ( ) (2) | (CVS) (3)
1 | .
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* Including higher corrections improves predictions
and reduces theoretical uncertainties




Improved predictions

do — Z / dovdzy fo(wr, ) fo(o, o) doax (5, s i)

Ao Born s (1) ( ) (2) ( ) (3)
1
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* Leading Order predictions can
depend strongly on the
renormalization and factorization
scales

* Including higher order corrections
reduces the dependence on these
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LO

ﬁ_O computation (top quark pair) \

0.12

normalized to
o.os| one :

At LO:

- Large scale uncertainty

- but mainly in the Normalisation
- LO is good for shape




Going NNLO...7

* NNLO is the current state-of-the-art. There are only
a few results available: Higgs, Drell-Yan, ttbar

pp - (Zy*)+X at Y=0

* Why do we need it! e

= control of the uncertainties in a
calculation

c/dM/dY [pb/GeV]

=[t is “mandatory” if NLO correctic
are very large to check the behavs
of the perturbative series

M = M,
MRST2001 pdfs
Up = g = B =
Hp=p g =M ———
pr =M pg=p -

:IIII|IIIIIIIIIIIIIIIIIII|II|.|_I.|.|_L|.I.|_|,L|,| 1 1 1 1 IIIII|IIII|IIII:

0.3 0.6 0.7 1.0 2.0 3.0 6.0

=[t is needed for Standard Candles #/M
and very precise tests of perturbation theory, exploiting all the
available information, e.g. for determining NNLO PDF sets
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Let’s focus on LO
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Tevatron vs. the LHC

B T

= Most important: g-g annihilation (85% of t t )
-LHC: 7-14 TeV proton-proton collider
= Most important: g-g annihilation (90% of t t )




Hadron Colliders
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proton - (anti)proton cross sections

and on:
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Parton densities
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At small x (small §), gluon domination.

LHC formidable at large mass —
At large x valence quarks

For low mass, Tevatron backgrounds smaller



Hadron colliders
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To Remember

2; /dimdﬂ?qu)Fs fa(z1, ur) fo(x, pr) Cap—x (5, hrF, UR)
“ Phase-space Parton density Parton-level cross
integral functions section

- PDF: content of the proton

= Define the physics/processes that will
dominate on your accelerator

- LO: good for shape
« NLO/NNLO: Reduce scale uncertainty

- Computation are inclusive (+ any jet) due
to renormalization/factorization scale

- /
. Mmattelaer olivier ~ Japam 2022 45




Matrix-Element

/“Calculate a given process (e.g. gluino pair) N\
- Determine the production mechanism

\%
sl
/S/M
1 3
QED=0

matrix-element )
2
|M| =Need Feynman Rules! @

- Phase-Space Integration

1 2
S o= 2—8/]./\/1\ dP(n) @

Tommorow

1 Very
¢ ;.
Hard

(in general)

Now




Monte Carlo Integration




Matrix-Element

/“Calculate a given process (e.g. gluino pair) N\
- Determine the production mechanism
(1'. Easy
e enough
matrix-element @ Hard
|M\2 =Need Feynman Rules!
"« Phase-Space Integration - mi?é
1 / 2 (in general)
oc=— [ IM|“dP(n .
— [ IMPPda(n) P

\_ /




Monte Carlo Integration

Calculations of cross section or decay widths involve
integrations over high-dimension phase space of very
peaked functions:

Dim|[®(n)] ~ 3n

1 , I'4
- — Q—S/w\ 4 ()

General and flexible method is needed

Not only integrating but also generates events



Integration
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Integration
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Integration

4 1 . i ™
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Importance Sampling
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The Phase-Space parametrization is important to have an
efficient computation!
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Importance Sampling

((non dq? )
/ (¢ — M? +iMT)?
2 Az
P2 / \ € = arctan (q T ]\]4\4 )
\ /2 M 2 é /
\

() Why Importance Sampling?

y [\ — /A\
Probability of using
that point p(x)
-I'/2 M rr2 E /2 /2 ﬁ

[ The change of variable ensure that the evaluation of]

the function is done where the function is the largest!




Cut Impact

- Events are generated according to our best
knowledge of the function (with importance
sampling

= Adding a cut needs to modified the
phase-space integrator

= Not possible for custom cut (hardcoded
by the user)

Custom cut

No cut Run card cut

A N
AN DA AN

S S
k -2 M r/2 E -2 M r/2 E -2 M /2 y




Cut Impact

~

No cut Run card cut Custom cut

|/ /N I

No cut Run card cut Custom cut

2/

pmﬁ / \\ : N pmA
S —N S
-I'/2 M rr2 E -I'/2 M rr2 E -2 M rr2

Y4

2/

Might miss the contribution and think it is just zero.




lmportance Sampling

/Kev Point )

 Generate the random point in a distribution
which is close to the function to integrate.

- This is a change of variable, such that the
function is flatter in this new variable.

*Needs to know an approximate function.

\_ y,
( Adaptative Monte-Carlo R
- Create an approximation of the function on
L the flight! ,




( Adaptative Monte-Carlo R
 Create an approximation of the function on

iyt
_ the flight! )
( Algorithm
T 1. Creates bin such that
B RN each of them have the
\ same contribution.
=Many bins where the

function is large

2. Use the approximate
for the importance
sampling method.

.




VEGAS

More than one Dimension h
* VEGAS works only with 1(few) dimension
)
L memory problem y
(Solution A
- Use projection on the axis
X)— X)e® °D(Z)...
L P(X)= p(x)*p(y)*p(2) )
. ™
« We need to
ensure the

factorization !

= Additional
change of

variable

J




Monte-Carlo Integration

* The choice of the parameterisation has a
strong impact on the efficiency

Yo

> >

n U

O The adaptive Monte-Carlo Technigue pieks point
Ln Lnteresting areas
—>» The technigue is efficlent




Monte-Carlo Integration

- The choice of the parametrization has a
strong impact on the efficiency

Y2

Griol

s Yyr — Y2

O The adaptive Monte-Carlo Technigues picks polnt
poltteregiiyvgarens
—>» The tedienyrqensviipesaiowly




Multl-channel

What do we do if there is
no transformation that
aligns all integrand peaks
to the chosen axes!?
Vegas is bound to fail!

pa) =3 am(@)  wih D =1
' i=1
with each pi(x) taking care of one “peak” at the time



Multl-channel




Multl-channel

Then,




Example: QCD 2 — 2

1 1
— X = = 0.4
(p1 + p2)? t

1
s

0.6

Three very different pole structures contributing
to the same matrix element.



Multl-channel

Consider the integration of an amplitude |M|*2 at tree level which many
contributing diagrams We would like to have a basis of functions,

f= Zfz with  f; >0, V i,

such that: =1

|. we know how to integrate each one of them,
2. they describe all possible peaks,

giving us the combined integral

I= /dcbf Z/d@gzé fZ(g:iIi,

Does such a basis exist!?




Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

i M| | M; |
/‘Mtot‘Q = > M, 2 | Miot]® = Z S M P [ Mior|?
J i J

- Any single diagram is “easy” to integrate (pole =~ 1
structures/suitable integration variables known
from the propagators)

— Divide integration into pieces, based on diagrams

— All other peaks taken care of by denominator sum

(N Integral I

— Errors add in quadrature SO NO extra cost

— “Weight” functions already calculated during |#1? calculation

\ — Parallel in nature /
. Mmattelaerolivier  Japam 2022 =




> | Mil? | M;]?
[Myot|* = / S ‘Mj‘Q‘MtotP = Z/ S ’Mj‘sztot\Q
J 7 J

4 )

P1 gg wpwm
s=725.73 + 2.07 (pb)
Graph|Cross-Section ||Error|Events (K)| Unwgt [Luminosity term of the above sum.
G222 377.6] 1.67] 142.285] 7941.0 21
G3 239| 1.16 220.04]10856.0 45.5 each term might not be
Gl 109.110.378 70.88| 3793.0 34.8 gauge invariant
P1 wpwm
s= 20.714 = 0.332 (pb)
Graph|Cross-Section ||Error|Events (K)|Unwgt|Luminosity
G122 20.7110.332 7.01] 373.0 18
\_ J




To Remember

-

(" Phase-Space integration is difficult N

We need to know the function
= Be careful with cuts

MadGraph split the integral in different
contribution linked to the Feynman Diagram

=Those are not the contribution of a given
diagram Y




Can we do Better?

Importance sampling/VEGAS is learning a
function

= HOT TOPIC: Machine Learning
= |_ot of work in progress

multi- channel VEGAS —} m

(Last week
number)

i

el
_}

Setup Channel | Integral I [pb] o/I Setup Channel| Integral I [pb] o/I
1 2.057(4) 0.98 VEGAS-Flow 0.0059(3) 0.24
ﬁw 3 108.4(3) 1.46 (tramed a, 100.27(6) 0.37 H
4 31.54(7)  1.20 10.86(2)  0.55 (Prellmlnary)
73.4(2)

W2j

. (o =
sum | 215.4(4) sum |;(1); :1;0(61;0)
Variance reduce by a factor 3 (so convergence 9 times faster)
Event generation also three times more efficient




Event Generation




What is the goal”

~ | ™
* Cross-section

- But large theoretical uncertainty}
.

e N
- Differential Cross-Section

* Provided as sample of events
- Sample size is problematic

- Those events will need to
have full detector simulation

. J




How to get sample”

-

Monte-Carlo integration use
random points

- We can keep those
* (Uncorrelated) sample

~

J
N

Y4

- Points not distributed as the

real function

*Need to keep track of the

importance of each point
(weight)

 Typically a lot of event have

o

low information




Do we need to keep small weight?

(. Let’s put a minimum A
- Discard events below the
minimum
* NO! We loose cross-section/ bias
ourself
“l#100 #100 - /
#0 4 , . )
* Let’s put a minimum
# 50
threshold - But keep 50% of the events below

- Multiply the weight of each event
by 2 (preserve cross-section)

 We loose information

- But we gain in file size




Do we need to keep small weight?
S

. Let’s put a threshold
* But keep 50% of the events below

- Multiply the weight of each event
by 2 (preserve cross-section)

\_ /
4 o N
- Let’s improve

#8 ,
4100 450 - Let’s make the threshold
Threshold proportional to the weight
., 100
. Keep each event with iy
Wihres

probability

Wthrea_
w

. If kept multiply his weight by

» SO the new weightis w,, .
9 J
. Mmattelaerolivier ~ Japamzo2z a0




Unweighted events

Events distributed as in nature

(. All bins should event event

proportional to their cross-section
(Up to Poisson distribution)

- All events should have the same

weight y

N
4 )
- This correspond to the smallest file

- - - - Size or maximum compression
do - /




Do we need to keep small weight?

- Let’s all event have the same weight
- So set w,,,, > max(w)

- Maximal compression
-

4 o )
- Let’s improve
* Let’s make the threshold
proportional to the weight
- So the new weight is w,, .
- /
4 )




Event generation

1 & 1 <& f(x;)
[f (x)dx — N ; f (xi) - 2 Winres

N i—1 Wihres

. PICI( X;
2. calculate f(x;)
3. pick y € [0, max(f)]

4. Compare:
if y <f(x;) accept event,

else reject it.




Event generation

Improved by combining with importance sampling:

|. pick x distributed as p(x)
2. calculate f(x) and p(x)
3. pick 0<y<I

4. Compare:
if f(x)>y p(x) accept event,

else reject it.

much better efficiency!!!



Monte-Carlo Summary
(" Bad Point I

- Slow Convergence (especially in low number
of Dimension)

 Need to know the function

\_ Impact on cut

/
/Good Point \

- Complex area of Integration

- Easy error estimate
- quick estimation of the integral

- Possibility to have unweighted events
g /




