

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Kind of measurement

Theory side

Monte-Carlo Physics

Our goal

- Cross-section
- Differential cross-section
- Un-weighted events

Simulation of collider events

Simulation of collider events

To Remember

- Multi-scale problem
 - New physics visible only at High scale
 - Problem split in different scale
 - Factorisation theorem

MASTER FORMULA FOR THE LHC

 $\hat{\sigma}_{ab\to X}(\hat{s},\mu_F,\mu_R)$

Parton-level cross section

Perturbative expansion

 $d\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

• The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion parameter, schematically:

Including higher corrections improves predictions
 and reduces theoretical uncertainties

Improved predictions

$$d\sigma = \sum_{a,b} \int dx_1 dx_2 \ f_a(x_1, \mu_F) f_b(x_2, \mu_F) \, d\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$$

$$\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right)$$

- Leading Order predictions can depend strongly on the renormalization and factorization scales
- Including higher order corrections reduces the dependence on these scales

LO

- NNLO is the current state of the fart. There are only a few results available: Higgs, Drell-Yan, ttbar
- Why do we need it?
 - control of the uncertainties in a calculation
 It is "mandatory" if NLO correction
 - It is "mandatory" if NLO corrections are very large to check the behave of the perturbative series
 - →It is needed for Standard Candles

 $\tilde{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_F^2))$

and very precise tests of perturbation theory, exploiting all the available information, e.g. for determining NNLO PDF sets

Wednesday 2 May 2012

Let's focus on LO

Tevatron vs. the LHC

Most important: q-q annihilation (85% of t t)

•LHC: 7-14 TeV proton-proton collider

→ Most important: g-g annihilation (90% of t t)

Hadron Colliders

Mattelaer Olívíer

Parton densities

Mattelaer Olívíer

Hadron colliders

To Remember

Matrix-Element

Monte Carlo Integration

Matrix-Element

Monte Carlo Integration

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

General and flexible method is needed

Not only integrating but also generates events

Integration

Integration

Integration

Importance Sampling

Mattelaer Olívíer

Importance Sampling

Mattelaer Olívíer

Cut Impact

- Events are generated according to our best knowledge of the function (with importance sampling
 - Adding a cut needs to modified the phase-space integrator
 - Not possible for custom cut (hardcoded by the user)

Cut Impact

Might miss the contribution and think it is just zero.

Importance Sampling

Key Point

- Generate the random point in a distribution which is close to the function to integrate.
- This is a change of variable, such that the function is flatter in this new variable.
- Needs to know an approximate function.

Adaptative Monte-Carlo

 Create an approximation of the function on the flight!

Adaptative Monte-Carlo

Create an approximation of the function on the flight!

Algorithm

- 1. Creates bin such that each of them have the same contribution.
 - Many bins where the function is large
- 2. Use the approximate for the importance sampling method.

VEGAS

More than one Dimension

- VEGAS works only with 1(few) dimension
 - memory problem

Solution

Use projection on the axis

 $\vec{\mathbf{p}}(\mathbf{x}) = \mathbf{p}(\mathbf{x}) \cdot \mathbf{p}(\mathbf{y}) \cdot \mathbf{p}(\mathbf{z}) \dots$

Monte-Carlo Integration

• The choice of the parameterisation has a strong impact on the efficiency

The adaptive Monte-Carlo Technique picks point in interesting areas
 The technique is efficient

Monte-Carlo Integration

• The choice of the parametrization has a strong impact on the efficiency

□ The adaptive Monte-Carlo Techniques picks point pointseeestigneneas

What do we do if there is no transformation that aligns all integrand peaks to the chosen axes? Vegas is bound to fail!

Solution: use different transformations = channels

$$p(x) = \sum_{i=1}^{n} \alpha_i p_i(x) \qquad \text{with} \qquad \sum_{i=1}^{n} \alpha_i = 1$$

with each $p_i(x)$ taking care of one "peak" at the time

with

Then,

$$I = \int f(x) dx = \sum_{i=1}^{n} \alpha_i \int \frac{f(x)}{p(x)} p_i(x) dx$$

$$\approx 1$$

Example: QCD 2 \rightarrow 2

Three very different pole structures contributing to the same matrix element.

Consider the integration of an amplitude |M|^2 at tree level which many contributing diagrams. We would like to have a basis of functions,

$$f = \sum_{i=1}^{n} f_i$$
 with $f_i \ge 0$, $\forall i$,

such that:

we know how to integrate each one of them,
 they describe all possible peaks,

giving us the combined integral

$$I = \int d\vec{\Phi} f(\vec{\Phi}) = \sum_{i=1}^{n} \int d\vec{\Phi} g_i(\vec{\Phi}) \frac{f_i(\vec{\Phi})}{g_i(\vec{\Phi})} = \sum_{i=1}^{n} I_i ,$$

Does such a basis exist?

Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

$$\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2$$

- Any single diagram is "easy" to integrate (pole ≈ 1 structures/suitable integration variables known from the propagators)
- Divide integration into pieces, based on diagrams
- All other peaks taken care of by denominator sum

N Integral

- Errors add in quadrature so no extra cost
- "Weight" functions already calculated during $|\mathcal{M}|^2$ calculation
- Parallel in nature

$$\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2$$

P1 qq wpwm

 $s = 725.73 \pm 2.07 \text{ (pb)}$

<u>Graph</u>	Cross-Section ↓	<u>Error</u>	<u>Events (K)</u>	<u>Unwgt</u>	<u>Luminosity</u>
G2.2	<u>377.6</u>	1.67	142.285	7941.0	21
G3	<u>239</u>	1.16	220.04	10856.0	45.5
G 1	<u>109.1</u>	0.378	70.88	3793.0	34.8

P1 gg wpwm

s= 20.714 ± 0.332 (pb)

<u>Graph</u>	Cross-Section ↓	<u>Error</u>	Events (K)	<u>Unwgt</u>	Luminosity
G1.2	<u>20.71</u>	0.332	7.01	373.0	18

term of the above sum.

each term might not be gauge invariant

To Remember

- Phase-Space integration is difficult
- We need to know the function
 - Be careful with cuts
- MadGraph split the integral in different contribution linked to the Feynman Diagram

Those are not the contribution of a given diagram

Can we do Better?

- Importance sampling/VEGAS is learning a function
 - HOT TOPIC: Machine Learning
 - → Lot of work in progress

Variance reduce by a factor 3 (so convergence 9 times faster)

Event generation also three times more efficient

Event Generation

What is the goal?

Cross-section

• But large theoretical uncertainty

Differential Cross-Section

- Provided as sample of events
- Sample size is problematic
 - Those events will need to have full detector simulation

How to get sample?

Do we need to keep small weight?

- Discard events below the minimum
- NO! We loose cross-section/ bias ourself

• Let's put a minimum

- But keep 50% of the events below
- Multiply the weight of each event by 2 (preserve cross-section)
- We loose information
- But we gain in file size

Do we need to keep small weight?

- But keep 50% of the events below
- Multiply the weight of each event by 2 (preserve cross-section)
- Let's improve
 - Let's make the threshold proportional to the weight

- . If kept multiply his weight by
- So the new weight is w_{thres}

W thres

W

Unweighted events

Mattelaer Olívíer

Do we need to keep small weight?

• Let's improve

- Let's make the threshold proportional to the weight
- So the new weight is w_{thres}
- Let's all event have the same weight
 - So set $w_{thres} > \max(w)$
- Maximal compression

- **2.** calculate $f(x_i)$
- **3.** pick $y \in [0, max(f)]$
- 4. Compare: if $y < f(x_i)$ accept event,
 - else reject it.

Event generation

else reject it.

much better efficiency!!!

Monte-Carlo Summary

Bad Point

- Slow Convergence (especially in low number of Dimension)
- Need to know the function
 - Impact on cut

Good Point

- Complex area of Integration
- Easy error estimate
- quick estimation of the integral
- Possibility to have unweighted events