

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

Kind of measurement

Theory side

Monte-Carlo Physics

Our goal

- Cross-section
- Differential cross-section
- Un-weighted events

Simulation of collider events

Simulation of collider events

To Remember

- Multi-scale problem
	- ➡ New physics visible only at High scale
	- ➡ Problem split in different scale
		- Factorisation theorem

Master formula for the LHC

 $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_F, \mu_R)$

Parton-level cross section

Perturbative expansion

 $d\hat{\sigma}_{ab\rightarrow X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion parameter, schematically:

• Including higher corrections improves predictions and reduces theoretical uncertainties

Improved predictions

$f_a(x_1, \mu_F) f_b(x_2, \mu_F)$ $\sum_{a,b}$ $d\sigma = \sum_{a,b} \int dx_1 dx_2 \; f_a(x_1,\mu_F) f_b(x_2,\mu_F) \, d\hat{\sigma}_{ab \to X}(\hat{s},\mu_F,\mu_R)$

$$
\hat{\sigma} = \sigma^{\text{Born}} \bigg(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi} \right)^3 \sigma^{(3)} + \dots \bigg)
$$

- Leading Order predictions can depend strongly on the renormalization and factorization scales
- •Including higher order corrections reduces the dependence on these scales

LO

• NNLO is the current-state of-the zart. There are only a few results available: Higgs, Drell-Yan, ttbar

 $\sigma_X = \sum \left[dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{\alpha}{2}, \frac{\alpha}{2}) \right]$

 $\left(\frac{Z}{F}\right)$

 $G_{dx_1dx_2}$ $G_{dx_1dx_2}$ $G_{dx_1dx_2}$ $G_{dx_1dx_2}$ $G_{dx_1dx_2}$

 $\binom{2}{F} f_b(x_2, \mu_F^2)$

•Why do we need it?

 dx_1dx_2 $f_a(x_1,\mu_P^2)$

 \sum

 $\sqrt{1}$

 $\overline{0}$

a,b

- ➡ control of the uncertainties in a calculation ● A NNLO computation gives control on the \rightarrow control of the unc
- \rightarrow It is "mandatory" if NLO corrections are very large to check the behave of the perturbative series \rightarrow the behaviour of the behaviour of the perturbative series seri of the period bative series
- ■It is needed for Standard Candles example that of NNLO PDF's.

 $\frac{2}{R}$

 Q^2

,

 Q^2

 $\overline{\mu^2_{I}}$ \bar{R}

 $\overline{\mu^2_{I}}$ $\bar{\bar{F}}$

 $\times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_P^2))$

and very precise tests of perturbation theory, exploiting all the available information, e.g. for determining NNLO PDF sets

Wednesday 2 May 2012

Let's focus on LO

Tevatron vs. the LHC

—

➡ Most important: q-q annihilation (85% of t t)

• LHC: 7-14 TeV proton-proton collider

➡ Most important: g-g annihilation (90% of t t)

— —

Hadron Colliders

Mattelaer Olivier Japan 2023

Parton densities

Mattelaer Olivier Japan 2023

Hadron colliders

To Remember

Matrix-Element

Monte Carlo Integration

Matrix-Element

Monte Carlo Integration

Calculations of cross section or decay widths involve integrations over high-dimension phase space of very peaked functions:

$$
\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)
$$
 $Dim[\Phi(n)] \sim 3n$

General and flexible method is needed

Not only integrating but also **generates events**

Integration

Integration

Integration

Importance Sampling

Mattelaer Olivier Japan 2023 22

Importance Sampling

the function is done where the function is the largest!

Cut Impact

- Events are generated according to our best knowledge of the function (with importance sampling
	- ➡ Adding a cut needs to modified the phase-space integrator
	- ➡ Not possible for custom cut (hardcoded by the user)

Cut Impact

Might miss the contribution and think it is just zero.

Importance Sampling

Key Point

- •Generate the random point in a distribution which is close to the function to integrate.
- •This is a change of variable, such that the function is flatter in this new variable.
- Needs to know an approximate function.

Adaptative Monte-Carlo

•Create an approximation of the function on the flight!

Adaptative Monte-Carlo

•Create an approximation of the function on the flight!

Algorithm

- 1. Creates bin such that each of them have the same contribution.
	- \rightarrow Many bins where the function is large
- 2. Use the approximate for the importance sampling method.

VEGAS

More than one Dimension

- VEGAS works only with 1(few) dimension
	- ➡memory problem

Solution

•Use projection on the axis

 $p(x)=p(x)\cdot p(y)\cdot p(z)...$ \rightarrow

Monte-Carlo Integration efficiency of an adaptative MC integration \mathcal{E}^{max} efficiency of the MC integration integration $\mathcal{L}_{\mathcal{A}}$

•The choice of the parameterisation has a strong impact on the efficiency

→ the adaptative Monte-Carlo P-S integration is very efficient → the adaptive Monte-Carlo P-S integration is very efficient **The adaptive Monte-Carlo Technique picks point in interesting areas The technique is efficient**

MadWeight – p. 12/29

Monte-Carlo Integration **Carlo Integration** efficiency of the MC integration $\mathcal{C}^{\mathcal{A}}$ is the MC integration $\mathcal{C}^{\mathcal{A}}$ choice outro the practice parameters choice of the phase-charametrization has a strong impact on the phase parameter α strong impact on the phase α efficiency of the MC integration integration $\mathcal{L}_{\mathcal{A}}$ represent of the phase-space parameter parameter ρ

choice of the phase-space parameterization has a strong impact on the phase-space parameterization has a strong

choice of the phase-space parameterization has a strong impact on the phase-space parameterization has a strong
The phase-space parameterization has a strong impact on the phase-space parameterization in the phase-space of

efficiency of the MC integration integration in strong impact on the efficiency • The choice of the parametrization has a parametrization di contro efficiency of the MC integration integration strong impact on the efficiency strong impact on the efficiency • The choice of the parametrization has a variable of the parametrization has a Strong impact on the chiefency to align the peaks along a single direction of the P-S parameter \mathcal{L}_{max}

 \neg The adaptive Monte-Carlo Techniques pi **D** The adaptive Monte-Carlo Techniques picks point poi*intse e est invel are* **1990 a fould converge union of Company there** \neg The adaptive Monte-Carlo Techniques pi **point in interesting areas** tradiamératra indica del Com<mark>posable</mark> □ The adaptive Monte-Carlo Techniques picks point \sim the adaptive Monte-Carlo P-S integration is very effect of \sim integration is very effect of \sim

MadWeight – p. 12/29

What do we do if there is no transformation that aligns all integrand peaks to the chosen axes? Vegas is bound to fail!

Solution: use different transformations = channels

$$
p(x) = \sum_{i=1}^{n} \alpha_i p_i(x) \qquad \text{with} \qquad \sum_{i=1}^{n} \alpha_i = 1
$$

with each $p_i(x)$ taking care of one "peak" at the time

with

Then,
\n
$$
I = \int f(x)dx = \sum_{i=1}^{n} \alpha_i \int \frac{f(x)}{p(x)} p_i(x)dx
$$
\n
$$
\approx 1
$$

$Example: QCD 2 \rightarrow 2$

hnoo yomr dif \overline{a} and \overline{a} \overline{b} \overline{c} \overline{c} \overline{d} 1. 1. 0 Three very different pole structures contributing to the same matrix element.

Consider the integration of an amplitude |M|^2 at tree level which many contributing diagrams. We would like to have a basis of functions,

$$
f = \sum_{i=1}^{n} f_i \quad \text{with} \quad f_i \ge 0, \quad \forall \ i,
$$

such that:

2. they describe all possible peaks, 1. we know how to integrate each one of them,

giving us the combined integral

$$
I = \int d\vec{\Phi} f(\vec{\Phi}) = \sum_{i=1}^{n} \int d\vec{\Phi} \, g_i(\vec{\Phi}) \, \frac{f_i(\vec{\Phi})}{g_i(\vec{\Phi})} = \sum_{i=1}^{n} I_i \,,
$$

Does such a basis exist?

Single-Diagram-Enhanced technique

*Method used in MadGraph

Trick in MadEvent: Split the complexity

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

- **–** Any single diagram is "easy" to integrate (pole structures/suitable integration variables known from the propagators) \approx 1
- **–** Divide integration into pieces, based on diagrams
- **–** All other peaks taken care of by denominator sum

N Integral

- **–** Errors add in quadrature so no extra cost
- **–** "Weight" functions already calculated during |*M*|2 calculation
- **–** Parallel in nature

$$
\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2
$$

P1 qq wpwm

 $s=725.73 \pm 2.07$ (pb)

P1 gg wpwm

 $s=20.714 \pm 0.332$ (pb)

term of the above sum.

each term might not be gauge invariant

To Remember

- Phase-Space integration is difficult
- We need to know the function
	- \rightarrow Be careful with cuts
- MadGraph split the integral in different contribution linked to the Feynman Diagram

➡Those are not the contribution of a given diagram

Can we do Better?

•Importance sampling/VEGAS is learning a function **Monte Carlo integration**

- → HOT TOPIC: Machine Learning
	- ➡ Lot of work in progress

Variance reduce by a factor 3 (so convergence 9 times faster)

Event generation also three times more efficient

Event Generation

What is the goal?

• Cross-section

•But large theoretical uncertainty

• Differential Cross-Section

- Provided as sample of events
- •Sample size is problematic
	- Those events will need to have full detector simulation

How to get sample?

Do we need to keep small weight?

- Discard events below the minimum
- NO! We loose cross-section/ bias ourself
- Let's put a minimum
	- But keep 50% of the events below
	- Multiply the weight of each event by 2 (preserve cross-section)
	- We loose information
	- But we gain in file size

Do we need to keep small weight?

- But keep 50% of the events below
- Multiply the weight of each event by 2 (preserve cross-section)

• Let's improve

• Let's make the threshold proportional to the weight

- If kept multiply his weight by
- So the new weight is w_{thres}

wthres

w

 $%$

Unweighted events

Events distributed as in nature

 $\mathcal O$

Do we need to keep small weight?

• Let's improve

- $\left| \text{ } \right|$ **So set** $w_{thres} > \max(w)$
	- Maximal compression

-
- 2. calculate $f(x_i)$
- **3.** pick *y* ∈ [0, $max(f)$]
- 4. Compare: if $y < f(x_i)$ accept event,
	- else reject it.

Event generation

else reject it.

much better efficiency!!!

Monte-Carlo Summary

Bad Point

- Slow Convergence (especially in low number of Dimension)
- Need to know the function
	- •Impact on cut

Good Point

- •Complex area of Integration
- Easy error estimate
- •quick estimation of the integral
- Possibility to have unweighted events