

New physics simulations From Lagrangians to events... and back

Benjamin Fuks

(LPTHE - Sorbonne Université)

New physics simulations – From Lagrangians to events and back

Iwate Collider School 2023 (Appi, Iwate) **27 February – 4 March 2023**

Implementing models into Monte Carlo event generators

New physics simulations – From Lagrangians to events and back

Outline

From events to Lagrangian: reinterpretation of the results of the LHC

MC simulations & new physics

Towards the characterisation of new physics

- About the nature of an observation
 - → Fitting and (re)interpreting deviations
 - \rightarrow Prospective collider studies of varied signals
- Final words on the nature of any potential BSM
 - \rightarrow Accurate measurements
 - → Precise predictions mandatory

Goal of all lectures at this school

MC simulations & new physics

Towards the characterisation of new physics

- About the nature of an observation
 - → Fitting and (re)interpreting deviations
 - \rightarrow Prospective collider studies of varied signals
- Final words on the nature of any potential BSM
 - \rightarrow Accurate measurements
 - \rightarrow Precise predictions mandatory

New physics simulations standard today

- 20 25 years of developments → LO simulations = bread and butter
- Simulations at NLO (QCD) easily achieved

New physics simulations – From Lagrangians to events and back

Goal of all lectures at this school

New physics simulations – From Lagrangians to events and back

Proton

New physics simulations – From Lagrangians to events and back

Hard process

- Depends on the model (SM/BSM)
- Perturbative QCD
- Core #1 of this talk \bullet

Proton

New physics simulations – From Lagrangians to events and back

Hard process

- Depends on the model (SM/BSM)
- Perturbative QCD
- Core #1 of this talk \bullet

Parton showering

• Universal (QCD)

New physics simulations – From Lagrangians to events and back

Hard process

- Depends on the model (SM/BSM)
- Perturbative QCD
- Core #1 of this talk

Parton showering

• Universal (QCD)

Hadronisation

• Model-based, universal

Underlying event

Model-based, non-universal

Proton

New physics simulations – From Lagrangians to events and back

Hard process

- Depends on the model (SM/BSM)
- Perturbative QCD
- Core #1 of this talk

Parton showering

• Universal (QCD)

Hadronisation

• Model-based, universal

Underlying event

Model-based, non-universal

Proton

Detector simulation

New physics simulations - From Lagrangians to events and back

→ one tool / step

SM and BSM simulations: the status

SM simulations under good control

- Relevant LHC processes: known with a very good precision
- Further improvements expected in the next few years

SM and BSM simulations: the status

SM simulations under good control

- Relevant LHC processes: known with a very good precision
- Further improvements expected in the next few years

Different challenges for new physics

- No sign of new physics
- SM-like measurements \rightarrow no leading candidate theory
- Plethora of models to consider \rightarrow many implementations in tools

Despite of this, new physics is standard today

Connecting ideas to simulations...

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Model building

• Hard scattering * Feynman diagram and amplitude generation * Monte Carlo integration * Event generation

 QCD environment * Parton showering ***** Hadronisation * Underlying event

 Detector simulation * Simulation of the detector response * Object reconstruction

• Event analysis * Signal/background analysis * LHC recasting

RIVET / MADANALYSIS 5 * Signal/background analysis * LHC recasting

A comprehensive approach for Monte Carlo simulations

New physics simulations – From Lagrangians to events and back

Outline

Implementing models into Monte Carlo event generators

3. From events to Lagrangian: reinterpretation of the results of the LHC

The role of the Lagrangian

Implementation of a new physics model in an MC programme

- Definition: particles, parameters and vertices (≡ Lagrangian) \rightarrow translated in some programming language
- Tedious, time-consuming, error prone
- Beware of restrictions/conventions

 $\begin{array}{l} -\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \\ \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \\ M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c^{2}_{w}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \end{array}$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^+_\mu W^-_\nu + \psi^+_\mu W^-_\mu + \psi^+_\mu W^-_\mu + \psi^+_\mu W^-_\mu W^-_\mu$ $\begin{array}{l} & W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & - M_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}) \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}) \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] \\ & - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}$ $\begin{array}{l} \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + \\ g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \\ \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - \end{array}$ $gMW^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{\mu}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$

The role of the Lagrangian

Implementation of a new physics model in an MC programme

- Definition: particles, parameters and vertices (≡ Lagrangian) \rightarrow translated in some programming language
- Tedious, time-consuming, error prone
- Beware of restrictions/conventions

Highly redundant (each tool, each model) ***** No-brainer tasks (from Feynman rules to codes)

New physics simulations – From Lagrangians to events and back

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}G^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\mu}W^{-}_{\mu} - \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \frac{1}{2}ig^{a}_{s}(\bar{q}^{a}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \frac{1}{2}ig^{a}_{s}(\bar{$ $M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{*}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2r_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2r_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_{\mu}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_{\mu}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_{\mu}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\partial_{\mu}\partial_{\mu}\partial_$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^+_\mu)]$ $-Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+Z_{\mu}^{0}$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $\begin{array}{l} W_{\nu}^{+}W_{\mu}^{-}) &-2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \\ \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - \end{array}$ $gMW^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$

The role of the Lagrangian

Implementation of a new physics model in an MC programme

- Definition: particles, parameters and vertices (≡ Lagrangian) \rightarrow translated in some programming language
- Tedious, time-consuming, error prone
- Beware of restrictions/conventions

★ Highly redundant (each tool, each model) ***** No-brainer tasks (from Feynman rules to codes)

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}G^{a}g^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\mu}W^{-}_{\mu} - \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{a}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \frac{1}{2}ig^{2}_{s}(\bar{$ $M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{*}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{g^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\phi^$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^-_\mu)]$ $- Z^0_\nu (W^+_\mu \partial_\nu W^-_\mu - W^-_\mu \partial_\nu W^+_\mu) + Z^0_\mu (W^+_\nu \partial_\nu W^-_\mu W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})]$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu})$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $\begin{array}{l} W_{\nu}^{+}W_{\mu}^{-}) &-2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \\ \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - \end{array}$ $gMW^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H)] + \frac{1}{2}g[W^{+}_{\mu}(H$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$

Systematisation **Automation**

Programmes connecting Lagrangians and HEP software

The FEYNRULES platform (since 2009)

- Working environment: MATHEMATICA
 - * Flexibility, symbolic manipulations, easy implementation of new methods, etc.
 - * Many plugins (superspace, spectrum, decays, NLO, etc.)
- Interfaces to many MC tools
- ***** Dedicated interfaces (CALCHEP, FEYNARTS)
- ★ Generic interface: UFOs (MG5_AMC, HERWIG, SHERPA, WHIZARD, ...)
- Very few limitations on models
- * Higher-dimensional operators supported
- * Spins (up to 2); colour structures (1, 3, 6, 8)

[Christensen & Duhr (CPC '09)] [Alloul, Christensen, Degrande, Duhr & BF (CPC'14)]

Programmes connecting Lagrangians and HEP software

The FEYNRULES platform (since 2009)

- Working environment: MATHEMATICA
- * Flexibility, symbolic manipulations, easy implementation of new methods, etc.
- * Many plugins (superspace, spectrum, decays, NLO, etc.)
- Interfaces to many MC tools
- * Dedicated interfaces (CALCHEP, FEYNARTS)
- ★ Generic interface: UFOs (MG5_AMC, HERWIG, SHERPA, WHIZARD, ...)
- Very few limitations on models
- * Higher-dimensional operators supported
- * Spins (up to 2); colour structures (1, 3, 6, 8)

[Christensen & Duhr (CPC '09)] [Alloul, Christensen, Degrande, Duhr & BF (CPC'14)]

LANHEP (since 1997)

- Working environment: C
- Initially restricted to CALCHEP/COMPHEP
- Later interfaced to FEYNARTS/UFOs

[Semenov (CPC'98); Semenov (CPC'16)]

The SARAH package (since 2010)

- Working environment: MATHEMATICA
- Spectrum generator, indirect constraints
- Interfaced to many tools (CALCHEP, FEYNARTS, UFO, WHIZARD)

[Staub (CPC'10); Staub (CPC'14)]

Interfacing Lagrangians and MC tools

How to link a Lagrangian to a given MC tool?

- Model Feynman rules (vertices, particle content, etc.)
- Removal of vertices not compliant with the tool → Colour structures
 - \rightarrow Lorentz structures
- Translation to a specific format and programming language

- → not efficient
- \rightarrow too many translators

Interfacing Lagrangians and MC tools

How to link a Lagrangian to a given MC tool?

- Model Feynman rules (vertices, particle content, etc.)
- Removal of vertices not compliant with the tool \rightarrow Colour structures
 - \rightarrow Lorentz structures
- Translation to a specific format and programming language

The UFO: one format to rule them all

New physics simulations – From Lagrangians to events and back

- → not efficient
- \rightarrow too many translators

The UFO in a nutshell

- UFO ≡ Universal FEYNRULES output → Universal Feynman Output * Universal as not tied to any specific programme
- Set of PYTHON files to be linked to any code
- A PYTHON model with full information ***** Generic colour and Lorentz structures
 - * Up to software to enforce restrictions on acceptable colour/Lorentz structures
- Allows for next-to-leading order calculations

The Universal FEYNRULES Output

[Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC '12)] [Degrande, Duhr, BF, Hirschi, Mattelaer, Pagani, Shao et al. (in prep.)]

The UFO in a nutshell

- UFO = Universal FEYNRULES output -> Universal Feynman Output * Universal as not tied to any specific programme
- Set of PYTHON files to be linked to any code
- A PYTHON model with full information
 - ***** Generic colour and Lorentz structures
- Allows for next-to-leading order calculations

New physics simulations – From Lagrangians to events and back

The Universal FEYNRULES Output

[Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC '12)] [Degrande, Duhr, BF, Hirschi, Mattelaer, Pagani, Shao et al. (in prep.)]

* Up to software to enforce restrictions on acceptable colour/Lorentz structures

The UFO in practice

The UFO = set of PYTHON files

- Factorisation of the information in mandatory and optional files
- \rightarrow particles
- \rightarrow parameters
- \rightarrow interactions
- \rightarrow extra stuff (NLO, decays, propagators, functions, etc.)
- Economical implementation of vertices and structures through recycling across the model

The UFO: particles & parameters

Particles = instances of the particle class

- Attributes: spin, colour representation, mass, width, etc.
- Antiparticles automatically derived

```
go = Particle(pdg_code = 1000021,
              name = 'go',
              antiname = 'go',
              spin = 2,
              color = 8,
              mass = Param.Mgo,
              width = Param.Wgo,
              texname = 'go',
              antitexname = 'go',
              charge = 0)
```


The UFO: particles & parameters

Particles = instances of the particle class

- Attributes: spin, colour representation, mass, width, etc.
- Antiparticles automatically derived

```
go = Particle(pdg_code = 1000021,
              name = 'go',
              antiname = 'go',
              spin = 2,
              color = 8,
              mass = Param.Mgo,
              width = Param.Wgo,
              texname = 'go',
              antitexname = 'go',
              charge = 0)
```

Parameters = instances of the parameter class

- External parameters: Les Houches-like structure
- PYTHON-compliant formula for the internal parameters

```
aS = Parameter(name = 'aS',
              nature = 'external',
              type = 'real',
              value = 0.1184,
              texname = '\\alpha _s',
               lhablock = 'SMINPUTS',
               lhacode = [3]
G = Parameter(name = 'G',
              nature = 'internal',
              type = 'real',
              value = '2*cmath.sqrt(aS)*cmath.sqrt(cmath.pi)',
              texname = 'G'
```


The UFO: strategy for interactions

Decomposition in a spin x colour basis (coupling strengths = coordinates)

• Example: the quartic gluon vertex

The UFO: strategy for interactions

Decomposition in a spin x colour basis (coupling strengths = coordinates)

• Example: the quartic gluon vertex

Information split across several files

[[fuks@NewMouth /Users/fuk	<pre><s documents="" heptools="" mg5_<="" pre=""></s></pre>	_aMC/2.9.13/models/DMSimpt	_NL0_v1_3_UF0\$] ls	
CT_couplings.py	initpy	function_library.py	parameters.py	write_param_card.py
CT_parameters.py	coupling_orders.py	lorentz.py	particles.py	
CT_vertices.py	couplings.py	object_Library.py	propagators.py	
DMSimpt_NL0_v1_3_UF0.log	decays.py	param_card.dat	vertices.py	

• UFO version

- ***** 3 elements for the colour basis
- * 3 elements for the spin (Lorentz structure) basis
- * 9 coordinates (6 are zero, only 1 encoded)

UFOs @ NLO: generalities

NLO predictions in a nutshell

• Three ingredients: the Born, virtual loop and real emission contributions

UFOs @ NLO: generalities

NLO predictions in a nutshell

• Three ingredients: the Born, virtual loop and real emission contributions

Goal: automated predictions, for any process in any model

- Dimensional regularisation
- \rightarrow Calculations in $d = 4 2\varepsilon$ dimensions

 \rightarrow Divergences explicit (1/ ϵ^2 , 1/ ϵ) after reduction of tensor integral reduction

- Numerical methods in 4 dimensions $\rightarrow R_1$ and R_2 terms
- Renormalisation \rightarrow counterterms

Extra information needed **UFO@NLO**

[Ossola, Papadopoulos, Pittau (NPB'07)] [Ossola, Papadopoulos, Pittau (JHEP'08)]

UFOs @ NLO in practice

The reduction must be performed in a *d*-dimensional space

 $\int \mathrm{d}^{d} \ell \frac{N(\ell, \tilde{\ell})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \quad \text{with } \bar{\ell} = \ell + \tilde{\ell}$ D-dim 4-dim (-2 ϵ)-dim

UFOs @ NLO in practice

The reduction must be performed in a *d*-dimensional space

$$\int \mathrm{d}^d \ell \frac{N(\ell, \tilde{\ell})}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \quad \text{with } \overline{\ell} = \ell - \frac{1}{D - \dim} \quad \text{with } \ell = \ell - \frac{1}{D - \dim} \quad \text{$$

R_1 terms from denominators

- dD vs. 4D internal propagators $(D_i \rightarrow D_i)$
- Computed on the fly (a few non-zero extra integrals)

New physics simulations – From Lagrangians to events and back

UFOs @ NLO in practice

The reduction must be performed in a *d*-dimensional space

$$\int \mathrm{d}^d \ell \frac{N(\ell, \tilde{\ell})}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \quad \text{with } \bar{\ell} = \ell - \frac{1}{D - \dim} \quad \text{with } \ell = \ell - \frac{1}{D - \dim} \quad \text{$$

R_1 terms from denominators

- dD vs. 4D internal propagators $(D_i \rightarrow D_i)$
- Computed on the fly (a few non-zero extra integrals)

R_2 terms from numerators

- Process-dependent contributions proportional to ℓ^2
- Renormalisable theory
 - \rightarrow Extra diagrams with special Feynman rules (R_2 Feynman rules)
 - \rightarrow Connected to the UV structure of the integrals (like counterterms)
- Derivation of these extra Feynman rules \rightarrow Finite number of R_2 's from the bare Lagrangian

 - → The NLOCT package [Degrande (CPC'15)]

NLO simulations with FEYNRULES & MG5_AMC

Hard-scattering process with MG5 aMC

Collider phenomenology

- Hadronisation models
- Detector simulation

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

Model building: from Lagrangian to tools • FEYNRULES \rightarrow UFO (@NLO) • PYTHON representation of the theory Automation of one-loop calculations

[Alloul, Christensen, Degrande, Duhr & BF (CPC'14)] [Degrande, Duhr, BF, Mattelaer & Reither (CPC'12)] [Degrande (CPC'15)]

• Feynman diagrams, matrix elements Perturbative series (LO/NLO) • Automation from the UFO information

[Alwall et al. (JHEP'14)]

[Frederix, Frixione, Hirschi, Pagani, Shao & Zaro (JHEP`18)] [Frixione, BF, Hirschi, Mawatari, Shao, Sunder & Zaro (JHEP`19)]

• Matching with parton showers

See all other lectures

New physics simulations – From Lagrangians to events and back

Outline

3. From events to Lagrangian: reinterpretation of the results of the LHC

From Lagrangians to events

New physics simulations standard today

- 20 25 years of developments
- Simulations at LO/NLO easily achieved

Let's reverse the chain...

New physics simulations – From Lagrangians to events and back

New physics results at the LHC

LHC = discovery machine

- Many ATLAS and CMS searches for new physics
- Interpretation within popular frameworks and simplified models

new physics works and simplified models

New physics results at the LHC

LHC = discovery machine

- Many ATLAS and CMS searches for new physics
- Interpretation within popular frameworks and simplified models

Need for reinterpretations in all kinds of models

new physics works and simplified models

Simplified Model Spectra (SMS)

The SMS-based reinterpretation framework

- Decomposition of all signatures of a theory into SMS signatures
- Fiducial cross sections on the basis of public efficiency maps
- Comparisons to published upper bounds

Main features

Simplified Model Spectra (SMS)

The SMS-based reinterpretation framework

- Decomposition of all signatures of a theory into SMS signatures
- Fiducial cross sections on the basis of public efficiency maps
- Comparisons to published upper bounds

Main features

- Rather fast
- Often conservative ***** Different kinematics *****Asymmetric decays

Simplified Model Spectra (SMS)

The SMS-based reinterpretation framework

- Decomposition of all signatures of a theory into SMS signatures
- Fiducial cross sections on the basis of public efficiency maps
- Comparisons to published upper bounds

Main features

- Rather fast
- Often conservative ***** Different kinematics
 - *****Asymmetric decays
- A generic program: SmodelS
 - $\star O(100)$ available analyses
 - * Prompt and LLP decays
 - [Kraml et al. (EPJC'14)] ***** Available from <u>GITHUB</u> [Kraml et al. (LHEP'20)]
- Dark photons: DARKCAST ***** Available from <u>GITLAB</u>

[llten et al. (JHEP'18)]

SMS reinterpretation tools - examples

DGMSSM at the LHC

- Exploring SUSY with Dirac gauginos
- Models not considered by ATLAS/CMS
- Left: points excluded by SMODELS (with $r \ge 1$)
- Right: comparison with full recasts (from MADANALYSIS 5) → SMS approach fair enough \rightarrow Far from full recasts
- SMS approach *much* faster

SMS reinterpretation tools - examples

SUSY vs extra dimensions

- Using SUSY searches to constrain KK excitations
 - → Blue: SMS approach
 - \rightarrow Red: full recast
- Efficiencies depend on particle spins
 - \rightarrow SMS approach often fair enough
 - → SMS approach often too aggressive

DGMSSM at the LHC

- Exploring SUSY with Dirac gauginos
- Models not considered by ATLAS/CMS
- Left: points excluded by SMODELS (with $r \ge 1$)
- Right: comparison with full recasts (from MADANALYSIS 5) → SMS approach fair enough \rightarrow Far from full recasts
- SMS approach *much* faster

Beyond the SMS approach

SMS often not sufficient to study all interesting new physics realisations

- More accurate detector simulations → mimicking ATLAS / CMS
- New frameworks for LHC re-interpretations
- \rightarrow Easy (re-)implementations of searches
- \rightarrow Test of signals fully automated

Beyond the SMS approach

SMS often not sufficient to study all interesting new physics realisations

- More accurate detector simulations → mimicking ATLAS / CMS
- New frameworks for LHC re-interpretations
- \rightarrow Easy (re-)implementations of searches
- \rightarrow Test of signals fully automated

The detector is the key

- Close to a real detector (slower)
- \rightarrow from particles to tracks/hits
- \rightarrow resolutions, efficiencies, etc.
- \rightarrow à la Delphes 3 [de Favereau et al. (JHEP`14)]
- Based on transfer functions (faster)
- \rightarrow From MC particles
- \rightarrow Resolutions, efficiencies, ...
- → à la Rivet, MADANALYSIS 5 SFS

[Araz, BF & Polykratis (EPJC²1)] [Bierlich et al. (SciPost`20)]

Unfolding

 \rightarrow No need for a detector

Examples from public programmes

Detector based on (customised) DELPHES 3

- CHECKMATE $[O(50) \text{ analyses, from } \underline{\text{GITHUB}}]$
- MADANALYSIS 5 [O(50) analyses, from GITHUB and the MA5 DATAVERSE]

[Derks et al. (CPC`17)] [Dumont, BF, Kraml et al. (EPJC`15); Conte & BF (IJMPA`19)]

Constraining t-channel dark matter with jets + MET (in MADANALYSIS 5)

- SM \oplus coloured fermion (ψ) \oplus scalar DM (S) \oplus coupling to u_R
- Signal modelling crucial: XX,YY and XY production @ NLO

Examples from public programmes

Detector based on (customised) DELPHES 3

- CHECKMATE $[O(50) \text{ analyses, from } \underline{\text{GITHUB}}]$
- MADANALYSIS 5 [0(50) analyses, from <u>GITHUB</u> and the MA5 <u>DATAVERSE</u>]

[Derks et al. (CPC`17)] [Dumont, BF, Kraml et al. (EPJC`15); Conte & BF (IJMPA`19)]

Constraining t-channel dark matter with jets + MET (in MADANALYSIS 5)

- SM \oplus coloured fermion (ψ) \oplus scalar DM (S) \oplus coupling to u_R
- Signal modelling crucial: XX,YY and XY production @ NLO

Based on transfer functions

- ullet

[Balász et al. (EPJC`17)] [Araz, BF & Polykratis (EPJC`21); Araz, BF, Goodsell & Utsch (EPJC`22)] [Buckley et al. (2010); Bierlich et al. (SciPost`20)]

• Validation = closure test

New physics simulations – From Lagrangians to events and back

• COLLIDERBIT [O(40) analyses, from HEPFORGE]MADANALYSIS 5 - SFS [O(10) analyses, from <u>GITHUB</u> and the MA5-<u>DATAVERSE</u>] RIVET [O(30)] analyses, from <u>HEPFORGE</u>

Constraining ewkinos with recursive Jigsaw (in COLLIDERBIT)

Picking up an experimental publication

- Reading
- Understanding

Writing the analysis code in the tool internal language

Relatively easy

Picking up an experimental publication

- Reading
- Understanding

Writing the analysis code in the tool internal language

A 2012 TH-wishlist for high-quality recasts (1/2)

- Clear description of cuts and their sequence
- Efficiencies (e^{\pm} , μ^{\pm} , jets, τ_h , b-tagging, etc.)
- \rightarrow Including p_T/η dependence
- Efficiencies for triggers, event cleaning, etc. → Effects not manageable in fast simulations
- Special variable definitions (razor, aM_{T2} , etc.)
- → Snippets of code

Relatively easy

Picking up an experimental publication

- Reading
- Understanding

Writing the analysis code in the tool internal language

Accurate information for proper validation

- Efficiencies (trigger, e^{\pm} , μ^{\pm} , b-tagging, JES, etc.)
- \rightarrow including p_T/ η dependence
- Detailed cutflows for well-defined benchmarks
 - \rightarrow Region per region information
 - → Exact definition of benchmarks (spectra)
 - \rightarrow Event generation information (cards, tunes)
- Digitised histograms (e.g. on HEPDATA)

A 2012 TH-wishlist for high-quality recasts (1/2)

- Clear description of cuts and their sequence
- Efficiencies (e^{\pm} , μ^{\pm} , jets, τ_h , b-tagging, etc.)
- \rightarrow Including p_T/η dependence
- Efficiencies for triggers, event cleaning, etc. \rightarrow Effects not manageable in fast simulations
- Special variable definitions (razor, aM_{T2} , etc.)
- \rightarrow Snippets of code

Essential Often difficult!

[Les Houches Recommendations (EPJC'12)]

Picking up an experimental publication

- Reading
- Understanding

Writing the analysis code in the tool internal language

Accurate information for proper validation

- Efficiencies (trigger, e^{\pm} , μ^{\pm} , b-tagging, JES, etc.)
- \rightarrow including p_T/ η dependence
- Detailed cutflows for well-defined benchmarks
 - \rightarrow Region per region information
 - \rightarrow Exact definition of benchmarks (spectra)
- → Event generation information (cards, tunes)
- Digitised histograms (e.g. on HEPDATA)

A 2012 TH-wishlist for high-quality recasts (1/2)

- Clear description of cuts and their sequence
- Efficiencies (e^{\pm} , μ^{\pm} , jets, τ_h , b-tagging, etc.)
 - \rightarrow Including p_T/η dependence
- Efficiencies for triggers, event cleaning, etc. \rightarrow Effects not manageable in fast simulations
- Special variable definitions (razor, aM_{T2} , etc.)
- \rightarrow Snippets of code

A 2012 TH-wishlist for high-quality recasts (2/2)

- Benchmark scenarios
 - → Spectra / decay tables (SLHA-form)
 - \rightarrow Several scenarios
- Monte Carlo configuration
- \rightarrow Cards, tunes, matching information, etc.
- **Detailed cutflows** (with correct cut ordering) → Including (pre)selection steps (more is better)
- Kinematical distributions at different cuts
- \rightarrow Extra cross-checks

[Les Houches Recommendations (EPJC'12)]

Benjamin Fuks - 01.03.2023 - 25

Relatively easy

Essential Often difficult!

Much better material

- Publications much clearer
- HEPDATA widely used
- Improved communication between the EXP/TH communities
- Sometimes works amazingly well: e.g. ATLAS multijet+MET
- Still improvable: e.g. ATLAS dE/dx [HSCP with large ionisation]

10 years later...

	ATLAS			MadAnalysis 5-SFS				
	Events	$\varepsilon~[\%]$	ε_{cut} [%]	Events	$\varepsilon~[\%]$	$\delta~[\%]$	ε_{cut} [%]	R_{gap} [%]
Initial (truth $E_T^{miss} > 150 \text{ GeV}$)	39598	-	100	89529	-	0.17	100	-
Lepton veto	37547	94.82	94.82	85417	95.41	0.17	95.41	0.62
$N_{jets} \le 4$	35412	89.43	94.31	76195	85.11	0.18	89.20	4.38
$\min[\Delta \phi(jets, E_T^{miss})]$ cut	33319	84.14	94.10	69253	77.35	0.18	91.00	8.07
Leading jet > 150 GeV and $ \eta < 2.4$	23134	58.42	69.43	47157	52.67	0.20	68.10	9.84
$E_T^{miss} > 200 \text{ GeV}$	18801	47.48	81.30	39183	43.77	0.20	83.10	7.81
EM0	4488	11.34	-	8509	9.50	0.22	-	16.23
EM1	3789	9.57	-	7946	8.88	-	-	7.21
EM2	2857	7.21	-	6226	6.95	-	-	3.61
EM3	2111	5.33	-	4621	5.16	-	-	3.19

Much better material

- Publications much clearer
- HEPDATA widely used
- Improved communication between the EXP/TH communities
- Sometimes works amazingly well: e.g. ATLAS multijet+MET
- Still improvable: e.g. ATLAS dE/dx [HSCP with large ionisation]
- A 2020 TH-wishlist for high-quality recasts
 - **Background estimates**: usually provided (not systematic)
 - Efficiencies
 - → Should be provided as tables / functional forms
 - \rightarrow Should be broken down in sub-efficiencies (trigger, etc.)
 - Efficiency maps: necessary for SMS-based recasting
 - Monte Carlo: still very minimal
 - → SLHA files, MG5 aMC cards, PYTHIA cards, etc.
 - \rightarrow Crucial for the validation (cf. MC bias)
 - Cut-flows for given benchmarks
 - \rightarrow not systematic (sequence, details, all SRs)

O years later...

	ATLAS			MadAnalysis 5-SFS				
	Events	$\varepsilon~[\%]$	ε_{cut} [%]	Events	$\varepsilon~[\%]$	$\delta~[\%]$	ε_{cut} [%]	R_{gap} [%]
Initial (truth $E_T^{miss} > 150 \text{ GeV}$)	39598	-	100	89529	-	0.17	100	-
Lepton veto	37547	94.82	94.82	85417	95.41	0.17	95.41	0.62
$N_{jets} \le 4$	35412	89.43	94.31	76195	85.11	0.18	89.20	4.38
$\min[\Delta\phi(jets, E_T^{miss})]$ cut	33319	84.14	94.10	69253	77.35	0.18	91.00	8.07
Leading jet > 150 GeV and $ \eta < 2.4$	23134	58.42	69.43	47157	52.67	0.20	68.10	9.84
$E_T^{miss} > 200 \mathrm{GeV}$	18801	47.48	81.30	39183	43.77	0.20	83.10	7.81
EM0	4488	11.34	-	8509	9.50	0.22	-	16.23
EM1	3789	9.57	-	7946	8.88	-	-	7.21
EM2	2857	7.21	-	6226	6.95	-	-	3.61
EM3	2111	5.33	-	4621	5.16	-	-	3.19

Agin

Strength in numbers: combination of searches

"Best signal region"

- Recast exclusions from the best region of an analysis
- Often off relative to CMS/ATLAS \rightarrow correlations rarely negligible

Public likelihoods

- Statistical model of an analysis = complete description of the analysis → Improving over the 'best signal region' approach
- → More realistic reinterpretations
- Simplified likelihoods by CMS / full likelihoods by ATLAS (PYHF)

$$\mathcal{L}_{SR} = \prod_{i} e^{-(S_i + B_i + \theta_i)} \frac{(S_i + B_i + \theta_i)_i^n}{n_i!} e^{-\frac{1}{2}\theta^t V^{-1}\theta}$$
 Non-Gaussia

- CMS simplified likelihoods in SMODELS, MADANALYSIS 5 & COLLIDERBIT
- ATLAS full likelihoods in SMODELS & MADANALYSIS 5

an tails ignored

Strength in numbers: combination of searches

"Best signal region"

- Recast exclusions from the best region of an analysis
- Often off relative to CMS/ATLAS \rightarrow correlations rarely negligible

Public likelihoods

- Statistical model of an analysis = complete description of the analysis → Improving over the 'best signal region' approach
- → More realistic reinterpretations
- Simplified likelihoods by CMS / full likelihoods by ATLAS (PYHF)

$$\mathcal{L}_{SR} = \prod_{i} e^{-(S_i + B_i + \theta_i)} \frac{(S_i + B_i + \theta_i)_i^n}{n_i!} e^{-\frac{1}{2}\theta^t V^{-1}\theta}$$
 Non-Gaussia

- CMS simplified likelihoods in SMODELS, MADANALYSIS 5 & COLLIDERBIT
- ATLAS full likelihoods in SMODELS & MADANALYSIS 5

Development of the TACO methods to combine uncorrelated analyses

- Identification of uncorrelated SRs in different analyses → Derivation of an approximate correlation matrix
- Optimal combinations among them (tests over 100s of regions) → Better reinterpretation power

an tails ignored

Implementing models into Monte Carlo event generators

3. From events to Lagrangian: reinterpretation of the results of the LHC

New physics simulations – From Lagrangians to events and back

Outline

The quest for new physics is on-going

- MC tools for background/signal modelling
- Automated methods for model implementation
- \rightarrow Facilitates new physics simulations at (N)LO

Tutorial: Give FEYNRULES a try!

The quest for new physics is on-going

- MC tools for background/signal modelling
- Automated methods for model implementation
- \rightarrow Facilitates new physics simulations at (N)LO

Tutorial: Give FEYNRULES a try!

New physics simulations – From Lagrangians to events and back

• Reinterpretation of the LHC results in any theoretical context crucial -> Two complementary approaches: simplified models and detector simulation • Exciting on-going developments: combining & correlating

Tutorial: Give MADANALYSIS 5 a try!

The quest for new physics is on-going

- MC tools for background/signal modelling
- Automated methods for model implementation
- \rightarrow Facilitates new physics simulations at (N)LO

Tutorial: Give FEYNRULES a try!

• Reinterpretation of the LHC results in any theoretical context crucial \rightarrow Two complementary approaches: simplified models and detector simulation • Exciting on-going developments: combining & correlating

Tutorial: Give MADANALYSIS 5 a try!

• **Reproducibility** = ability of an entire experiment to be reproduced (possibly by an independent theoretical study)

• Need for both the TH and EXP communities to move together!

