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Figure taken from Bierlich et al., 2022 (Pythia8.3 manual)
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Matrix elements 1n perturbation
theory

* In matrix element calculations in perturbation theory (Olivier’s
lecture)

* "Initial state QCD radiation" is included ("resummed") in the
PDFs

« Similarly "final state QCD radiation" is included through the
parton-jet duality

* Hence... all is already there!
What to do...?

* "Undo" this resummation
and make it explicit
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Why do this?

« Effects are already included (resummed) in fixed-order perturbation theory
« for many inclusive observables including shower should not influence the results

* but one would miss an extremely rich variety of observables which may play
Important roles in experimental analyses.

* When there are large scale differences entering the observables, fixed-order
perturbation theory breaks down!

 this does NOT mean that observable is useless/unimportant: it is just that one is
not using the right tools to describe it.

* |t is better to try and find a way to reorganise the computation in order to take

into account emissions close to the singular regions of the phase space, to all
orders in perturbation theory.

 "We want to simulate the collisions, hence we want to simulate also the creation of
the hadrons, for which we need parton showering"



Collinear tactorisation
b, 2

6
« Consider a process for which two particles are separated by a
small angle 6

 |In the limit of 8 = 0, the contribution is coming from a single parent
particle going on shell: therefore its branching is related to time
scales which are very long with respect to the hard subprocess

* The inclusion of such a branching cannot change the picture set up
by the hard process: the whole emission process must be writable
In this limit as the simpler one times a branching probabillity



Collinear factorisation
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* The process factorises in the collinear limit. This procedure is universal

dt = do o
‘Mn—|—1|2d(1)n—|—1 = ‘Mn|2dq)n ¢ SPa—)bc(Z)

dz

t 9w o

* Notice that what has been roughly called ‘branching probability’ is actually
a singular factor, so one will need to make sense of this definition.

« At the leading contribution to the (n+1)-body cross section the DGLAP

splitting kernels are defined as:
1 —
Pyoqq(2) =Tr [2" + (1 = 2)7] Py—g9(2) = Ca [Z(l —z) 1 i - T : ’

P oi(2) = Cp [1 +22] | Pyyon(2) = Cr [1 + (1Z— z)2] |

1 —z




Collinear factorisation
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* The process factorises in the collinear limit. This procedure is universal

dt = do o
‘Mn—|—1|2d(1)n—|—1 =~ ‘Mn|2dq)n ¢ SPa—>bc(Z)

dz

t 9w o

 t can be called the ‘evolution variable’ (will become clearer later): it can be
the virtuality m? of particle a, or its pt?, or E262 ... ) -
—  m ~z(1—-2)0"E;

* |t represents the hardness of the 2

2 Y
branching and tends to 0 in the collinear limit. pr = =

 |Indeed in the collinear limit one has:
so that the factorisation takes place

for all these definitions: d92/92 _ dmz/mz _ dp%/p;zp



Collinear factorisation
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* The process factorises in the collinear limit. This procedure is universal

dt = do o
‘Mn—|—1|2d(1)n—|—1 = ‘Mn|2dq)n ¢ SPa—>bc(Z)

dz

t T 2r o

« zis the “energy variable”: it is defined to be the energy fraction taken by
parton b from parton a

|t represents the energy sharing between b and c and tends to 1 in the
soft limit (parton ¢ going soft)

* ¢ Is the azimuthal angle. It can be chosen to be the angle between the
polarisation of a and the plane of the branching
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Collinear factorisation
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* The process factorises in the collinear limit. This procedure is universal

dt = do o
‘Mn—|—1|2d(1)n—|—1 = ‘Mn|2dq)n ¢ SPa—>bc(Z)

dz

t T 2r o

* This is an amplitude squared: naively one would maybe expect 1/t2
dependence. Why is the square not there?

 It's due to angular-momentum conservation.
E.g., take the splitting g — qg: helicity is conserved for the quarks, so the

final state spin differs by one unity with respect to the initial one. The
scattering happens in a p-wave (orbital angular momentum equal to one),

so there is a suppression factoras t — O.

* Indeed, a factor 1/t is always cancelled in an explicit computation
11



~Multiple emlssmn

d
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 Now consider Mn+2 as the new core process and use the recipe we used for
the first emission in order to get the dominant contribution to the (n+2)-body
cross section: add a new branching at angle much smaller than the

previous one: dé o
Mopo|?dPr s ~ | M,|2dd, —d " P, pe(2)
2T 27
dt’ =, d¢’ as
—d Py . g.(2
7 o o Poae(2)

This can be done for an arbitrary number of emissions. The recipe to get
the leading collinear singularity is thus cast in the form of an iterative
sequence of emissions whose probability does not depend on the past
history of the system: a ‘Markov chain’.
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* The dominant contribution comes from the region where the

subsequently emitted partons satisfy the strong ordering requirement:
0>»0 »0"...

For the rate for multiple emission we get

gt [t oay T (k=1 Qb
O o< / - / o /Q Sy xon(50) log(@%/Qd)

where Q is a typical hard scale and Qo is a small infrared cutoff that
separates perturbative from non perturbative regimes.

« Each power of as comes with a logarithm. The logarithm can easily be
large, and therefore we see a breakdown of perturbation theory
13
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Absence of interference

The collinear factorisation picture gives a branching sequence for a given leg
starting from the hard subprocess all the way down to the non-perturbative region.

Suppose you want to describe two such histories from two different legs:

» these two legs are treated in a completely uncorrelated way. And even within
the same history, subsequent emissions are uncorrelated.

The collinear picture completely misses the possible interference effects between
the various legs

 the extreme simplicity comes with the price of quantum inaccuracy.

Smart choices improve upon this: soft enhancement (which is purely an
interference contribution) can be included. For this, the evolution variable
must be related to the angle of the emission

Nevertheless, the collinear picture captures the leading contributions: it gives an
excellent description of an arbitrary number of (collinear) emissions:

* jtis a “resummed computation” and

* it bridges the gap between fixed-order perturbation theory and the non-
perturbative hadronisation.

14



Emission probability &
Sudakov form factor

The differential probability for the branching a — bc between scales t
and t+dt knowing that no emission occurred before:

dt dgb Ol
Z 27T 27T Pape(2)
The probability that a parton does NOT split between the scales t and
t+dt is given by 1-dp(t)

Probability that particle a does not emit between scales Q2 and t

(Q2 If) H 1_Zdtk/d %;‘_;Pa_)bc ) —

Q" dt' | do as e
exp —Z [t s Pea)| = e |~ [ bt

A(Q2,t) is the Sudakov form factor
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Parton shower

The Sudakov form factor is the heart of the parton shower. It gives the
probability that a parton does not branch between two scales

*Initial state shower also requires PDF contributions

Using this no-emission probability one can generate the branching tree of
a parton

Define dP« as the probability for k ordered splittings from leg a at given
Scales  upi(h) = AQ% 1) dp(t) A, QR),
dPs(t1,t2) = A(Q* 1) dp(t1) Alty,t2) dp(ta) At2, Q5)O(t1 — ta),

dPy(ty,...tr) = AQ%QY) [ dpt)O(ti—1 — 1)
=1

Qo2 is the hadronisation scale (~1_GeV2). Below this scale we do not trust
the perturbative description for parton splitting anymore

This is what is implemented in a parton shower, taking the scales for the
splitting ti randomly (but weighted according to the no-emission
probability)

16



Unitarity

k
dPy(t1,...tr) = AQ% Q3 [[dpt)O(ti—1 — 1)
[=1

The parton shower has to be unitary (the sum over all
branching trees should be 1). We can explicitly check this by
integrating the probability for k splittings

1| (@
sz/de(tl,...,tk):A(QQ,Q(Q))H / dp(t)| , Vk=0,1,..
. ] Q%

Summing over all number of emissions

1k

- o
[ ao| =a@.ehen | [ an| =1

2 2
QO i | 0

Zpk = A(Q% Qp) Z%
k=0 k=0

Hence, the total probability is conserved
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Cancellation of singularities

We have shown that the shower is unitary. However, how are the IR
divergences cancelled explicitly? Let's show this for the first emission:
Consider the contributions from (exactly) 0 and 1 emissions from leg a:

do dt do as
= AQQY + @AY Y s Py el

Expanding to first order in as gives

do At dé ag dt do g

PR Z/ —,dz 5o Py _pe(2) + Z dz ; P, pe(2)
Same structure of the two latter terms, with opposﬂe signs: cancellation of
divergences between the approximate virtual and approximate real emission

cross sections.

The probabilistic interpretation of the shower ensures that infrared
divergences will cancel for each emission.

18



Argument of os

Each choice of argument for as is equally acceptable at the leading-
logarithmic accuracy. However, there is a choice that allows one to resum
certain classes of subleading logarithms.

The higher order corrections to the partons splittings imply that the DGLAP
splitting kernels should be modified: Pa . be(z) — Pa . be(z) + 0s P’a . be(2)

For g — gg branchings P’a _ bc(z) diverges as -bo log[z(1-z)] Pa _ be(z)
(just z or 1-z if quark is present)

Recall the one-loop running of the strong coupling

2\ &S(MQ) N 2 < o 2 bl Q_2>
(@) = g ~ o) (1- sl lon

We can therefore include the P’(z) terms by choosing prt2~z(1-z)Q2 as
argument of as:

0s(Q%) (Pambe(2) + as(QM) Pape) = as(@Q”) (1 — as(Q)blogz(1 — 2)) Pu—pe(2)
~ as(2(1 = 2)Q%) Pa—be(2)

19



Choice of evolution parameter

Q° d’ dod o
A(Q, 1) = exp —Z / =S Py (2

There is a lot of freedom in the choice of evolution parameter t.
It can be the virtuality m2 of particle a or its pt2 or E262 ... For the
collinear limit they are all equivalent

A6 /67 = dm?/m® = dp}/v7
However, in the soft limit (z — 1) they behave differently

Can we chose it such that we get the correct soft limit?

YES! It should be (proportional to) the angle ©

20
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Angular ordering

> 12
2 (@ O(p-p,)
% O(¢-9»)

» Radiation inside cones around the original partons is allowed
(and described by the eikonal approximation), outside the
cones it is zero (after averaging over the azimuthal angle)

-+ photon

21



% Lifetime of the virtual intermediate state:
T <y/u=E/y2=1/(kob2) = 1/(k.0)

% Distance between g and gbar after T:
d = @1 = (¢/0) 1/k.

p? = (p+k)? = 2E ko (1-cos0)
~Eko02~Ek, 0

If the transverse wavelength of the emitted gluon is longer than the
separation between g and gbar, the gluon emission is suppressed,
because the g gbar system will appear as colour neutral (i.e. dipole-

like emission, suppressed)

Therefore d>1/k. , which implies © < ¢
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Angular ordering

 The construction can be iterated to the next

emission, with the result that the emission
angles keep getting smaller and smaller.

One can generalise it to a generic parton of
colour charge Qx splitting into two partons |
and j, Qx=Qi+Q;. The result is that inside
the cones i and | emit as independent
charges, and outside their angular-ordered
cones the emission is coherent and can be
treated as if it was directly from colour
charge Qkx.

* Angular ordering is automatically satisfied in

O ordered showers! (and straight-forward to
account for in pt ordered showers)

23



Angular ordering

Angular ordering is:

1. A quantum effect coming from the interference of different
Feynman diagrams.

2. Nevertheless it can be expressed in “a classical fashion”
(square of an amplitude is equal to the sum of the squares of two
special “amplitudes”). The classical limit is the dipole-radiation.

3. It is not an exclusive property of QCD (i.e., it is also present in
QED) but in QCD produces very non-trivial effects, depending on
how particles are colour connected.

24



Initial-state parton splittings

So far, we have looked at final-state (time-like) splittings
For initial state, the splitting functions are the same

However, there is another ingredient:
the parton density (or distribution) functions (PDFs)

= Naively: Probability to find a given parton in a hadron at a
given momentum fraction x = p,/P, and scale t

How do the PDFs evolve with increasing t?

25



QQ

 Start with a quark PDF fy(x) at scale to. After considering a single
parton emission, the probability to find the quark at virtuality t > to is

Lt o dz
o=+ [ G2 [ Erep (%)
o After a second emission, we have

e =)+ | o [ Epe(n (2) 27 F 0

t’ 7, 1 /
dt"” o dz €T
: | ( ) }
i /to t" 2m -/:c/z Z (Z )fo %
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« So for multiple parton splittings, we arrive at an integral-differential

equation: 1
dz o

D= [ Loy (50)

* This is the famous DGLAP equation (where we have taken into account
the multiple parton species i, ). The boundary condition for the
equation is the initial PDFs fio(x) at a starting scale to (around 2 GeV).

* These starting PDFs are fitted to experimental data.

27



Initial-state parton showers

« To simulate parton radiation from the initial state, we start with the hard

scattering, and then “devolve” the DGLAP evolution to get back to the
original hadron: backwards evolution!

* |.e. we undo the analytic resummation and replace it with explicit
partons (e.g. in Drell-Yan this gives non-zero pr to the vector boson)

* |In backwards evolution, the Sudakovs include also the PDFs -- this

follows from the DGLAP equation and ensures conservation of
probability:

t 1 / / ! 4!
2 dz’ ag(t") x\ fi(z' 1)
Ari(z,t1,ts) = — [ ad PZ--( ) ’

$/

This represents the probability that parton i will stay at the same x (no
splittings) when evolving from t1 to to.

* The shower simulation is now done as in a final state shower

28
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Hadronisation

The shower stops if all partons are characterised by a scale at
the IR cut-off: Qo ~ 1 GeV

Physically, we observe hadrons, not (coloured) partons

We need a non-perturbative model in passing from partons to
colourless hadrons

There are two models, based on physical and
phenomenological considerations

29
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Cluster model

The structure of the perturbative evolution including angular ordering,
leads naturally to the clustering in phase-space of colour-singlet parton
pairs (pre-confinement). Long-range correlations are strongly
suppressed. Hadronisation will only act locally, on low-mass colour
singlet clusters.

0.9 e
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String model

From lattice QCD one sees that the colour confinement potential of a
quark-antiquark grows linearly with their distance: V(r) ~ kr, with k ~
0.2 GeV, This is modelled with a string with uniform tension (energy
per unit length) k that gets stretched between the qq pair.

V(R)

0.9
0.8
0.7
0.6 .

0.5

0.3

Fig. 29. QCD potential ve. R (in lattice units) from lattice QCD. Figure from
ref. [23].

When quark-antiquarks are too far apart, it becomes energetically more
favourable to break the string by creating a new qqg pair in the middle.
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Exclusive observable

Charged particle multiplicity

10° g T T T —
n Herwig++ 1.0
=1 ._{;|1'-.- .........
4 =2.3GeV
0 = i,_'{:|1'\- —_——— ]
101 L OPAL 99 —— |

A parton shower program associates one of the possible histories
(and pre-histories in case of pp collisions) of an hard event in an
explicit and fully detailed way, such that the sum of the probabilities of

all possible histories is unity.
32



Parton Shower MC event
generators

A parton shower program associates one of the possible histories
(and pre-histories in case of pp) of an hard event in an explicit and
fully detailed way, such that the sum of the probabilities of all
possible histories is unity.

» (General-purpose tools
« Always the first experimental choice

 Complete exclusive description of the events: hard scattering,
showering & hadronisation (and underlying event)

 Reliable and well-tuned tools

« Significant and intense progress in the development of new
showering algorithms with the final aim to go at NLO in QCD

33
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Pythia, Sherpa, Herwig, ...

» Significant differences between shower implementations
(choice of evolution variable and kernel, momentum mappings, phase-
space boundaries, massive quarks, photon emissions, etc.)

* All are tuned to data, and describe it reasonably well
(typically better than expected from their formal accuracy)

« Some are (formally) more correct than others

 However, not easy to assess accuracy for a general
observable

* Assessment (and improvement!) of formal accuracy is an
active field of research
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