
NLO QCD and EW corrections 
(What are? How to compute them with MG5?)

Davide Pagani 
Iwate Collider School (ICS2023)  

Hachimantai (Japan) 
03-2023 

Istituto Nazionale di Fisica Nucleare
SEZIONE DI BOLOGNA



OUTLINE
Why NLO and higher-order corrections are important? 

General aspects of NLO, focusing on NLO QCD 

NLO EW (EW renormalisation) 

If time is enough: Complete-NLO, Sudakov 
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Motivations: 

Why calculating NLO 
and higher-order 

corrections? 
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SM at the LHC (all good, too good)
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Differential distributions: let’s look at the tails

σ

E
With higher luminosity (and higher energy), at the LHC the accuracy of all 
measurements will in general increase, especially in the tail of distributions. 
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Small deviations 
from BSM 
dynamics? 
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Differential distributions: let’s look at the tails

With higher luminosity (and higher energy), at the LHC the accuracy of all 
measurements will in general increase, especially in the tail of distributions. 

Precise predictions are necessary for the current and future measurements at 
the LHC. In order to match the experimental precision NLO QCD, NLO EW 
and even higher-order corrections are paramount. 
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Predictions at the LHC

Fig. 13: Bin-by-bin determination of for several different shape variables.

figure, parallel bands correspond to these three choices. The errors on the various point are experimental
errors. If we had a perfect QCD calculation, e.g. all orders in perturbation theory, and hadronization
corrections were truly negligible, we should expect all experimental point to lie (within errors) on a
constant line. If we only have a leading order calculation, we expect instead large differences among the
various points, that should become smaller and smaller as we include higher order corrections. In the
plot, of course, we can only represent the leading and next-to-leading result, since an calculation
has never been performed. It is quite striking to see how, by including the next-to-leading corrections,
the various determinations become much closer to each other. It is left to our fantasy to imagine what
would happen if we could include the effects. Table 3 summarizes the determinations of from
event shape variables.

5 PROCESSESWITH HADRONS IN THE INITIAL STATE
We will now turn to describe the application of perturbative QCD to processes in which hadrons are
present also in the initial state, like Deep-Inelastic Scattering (DIS), or the production of some objects
of high invariant mass in hadronic collisions. It turns out that cross sections for these processes can be
computed and related to each other. In general the cross section for the production of some final state
with high invariant mass (which could be made of a heavy weak vector boson, a lepton-antilepton pair,
heavy quarks, jets, and the like) will be expressed by the so called improved parton model formula

(83)

whose meaning is depicted in fig. 14.

25

Every prediction at the LHC starts form here:

PDFs Partonic cross sections 

- PDFs are fitted from experimental measurements, only the dependence on µ 
can be calculated in perturbation theory via DGLAP equations.  

- Partonic cross sections can be calculated in perturbation theory via Feynman 
diagrams.

Renormalization/factorization scale 
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25

PDFs Partonic cross sections 

- PDFs are fitted from experimental measurements, only the dependence on µ 
can be calculated in perturbation theory via DGLAP equations.  

- Partonic cross sections can be calculated in perturbation theory via Feynman 
diagrams.

Precise predictions at the LHC: for what? 
- More precise predictions for the total cross sections. (Total normalization) 
- More precise differential distributions. (Kinematic-dependent corrections) 
- Reduction of µ dependence. (Theoretical accuracy)

Methods/ 
Approximations

Renormalization/factorization scale 

Fixed orders , Resummation, RGE, Parton Shower, 
Matching, Merging …………..
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Fixed Order calculations
In the SM, contributions to the partonic cross section can be organized according 
to the powers of       and      (number of loop corrections and real emissions).

2.4 Total cross sections from 8 to 100 TeV

In addition to the studies performed for the LHC at 13 TeV, in this subsection we discuss
and show results for the dependence of the total cross section on the energy of the proton–
proton collision. In figure 19 NLO QCD total cross sections are plotted from 8 to 100 TeV, as
bands including scale and PDF uncertainties. The corresponding numerical values are listed
in table 4. As usual, central values refers to µ = µg, and scale uncertainties are obtained
by varying independently µr and µf in the standard interval [µg/2 < µf , µr < 2µg].

In the left plot of figure 19 we show the results for tt̄V -type processes, whereas tt̄tt̄

production and tt̄V V -type processes results are displayed in the right plot. In both plots
we show in the first and in the second inset the dependence of the K-factors at µ = µg on
the energy. The first insets refer to processes with zero total-charge final states, whereas
the second insets refer to processes with charged final states. The very different qualitative
behaviors between the two classes of processes is due to the fact that the former include
already at LO an initial state with gluons, whereas the latter do not. The gluon appears
in the partonic initial states of charged processes only at NLO via the (anti)quark–gluon
channel. At small Bjorken-x’s, the gluon PDF grows much faster than the (anti)quark
PDF. Thus, increasing the energy of the collider, the relative corrections induced by the
(anti)quark–gluon initial states leads to the growth of the K-factors and dominates in their
energy dependence. Also, as can be seen in figure 19 and table 4, these processes present a
larger dependence on the scale variation than the uncharged processes. [Davide: what don’t
you like of the previous sentence Fabio? ]

The differences in the slopes of the curves in the main panels of the plots are also
mostly due to the gluon PDF. Charged processes do not originate from the gluon–gluon
initial state neither at LO nor at NLO. For this reason, their growth with the increasing of
the energy is smaller than for the uncharged processes. All these arguments point to the
fact that, at 100 TeV collider, it will be crucial to have NNLO QCD corrections for tt̄W

±,
tt̄W

±
� and tt̄W

±
Z processes.

The fact that tt̄tt̄ production is the process with the rapidest growth is again due to
percentage content of gluon–gluon-initiated channels, which is higher than for all the other
processes. [Davide: Should we shows plots in figure 20? ]. From the left plot, it is easy
also to note that the scale uncertainty of tt̄tt̄ production is larger than for the tt̄V V -type
processes. In this case, the difference originates from the different powers of ↵s at LO; tt̄tt̄
production is of O(↵

4
s) whereas tt̄V V -type processes are of O(↵

2
s↵

2
). [Davide: Additional

comments??? ]
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2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).

q

q

t

tγ
q

q

t

tZ

q

q

t

tg

g

g

t

tg

g

g

t

t
t

g

g

t

tt

Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield

2

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

(12)
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Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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averaging in the initial state we find that
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F tt̄
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F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).

q

q

t

tγ
q

q

t

tZ

q

q

t

tg

g

g

t

tg

g

g

t

t
t

g

g

t

tt
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
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O(α3
s),asym

=
2Re

(
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O(α

√
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∣
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∣
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=
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QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
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QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40
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that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
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QED =
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3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
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The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are
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1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
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that arises from Tr(tAtBtC) = 1
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ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
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QED by simple equations.
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The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3
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5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
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sα),asym

|Mtt̄g|
2
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s),asym

=
2Re

(

Mtt̄g
O(α

√
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√
αs)

)
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∣

∣Mtt̄g
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√
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∣

∣
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F tt̄g
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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Figure 5: Real emissions of gluon: photon in the propagator

(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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αÑ1

αsN1

= 0.09 (7)

Rtt̄
EW (Mtt̄ > 450 GeV) = (8)

(0.200, 0.232, 0.266) (9)

RQED(Qq) =
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∆y = yt − yt̄ (2)
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(x2) (3)
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(x1)fp2,H1

(x2) (4)

H1H2 → tt̄+X (5)

O(αsα) = 0 (6)
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

#(QED  diagrams)
=

3 #(QCD  diagrams)
Born LO NLO QCD 

     corrections 
NLO EW 

      corrections 

NNLO QCD 
     corrections 

2.4 Total cross sections from 8 to 100 TeV

In addition to the studies performed for the LHC at 13 TeV, in this subsection we discuss
and show results for the dependence of the total cross section on the energy of the proton–
proton collision. In figure 19 NLO QCD total cross sections are plotted from 8 to 100 TeV, as
bands including scale and PDF uncertainties. The corresponding numerical values are listed
in table 4. As usual, central values refers to µ = µg, and scale uncertainties are obtained
by varying independently µr and µf in the standard interval [µg/2 < µf , µr < 2µg].

In the left plot of figure 19 we show the results for tt̄V -type processes, whereas tt̄tt̄

production and tt̄V V -type processes results are displayed in the right plot. In both plots
we show in the first and in the second inset the dependence of the K-factors at µ = µg on
the energy. The first insets refer to processes with zero total-charge final states, whereas
the second insets refer to processes with charged final states. The very different qualitative
behaviors between the two classes of processes is due to the fact that the former include
already at LO an initial state with gluons, whereas the latter do not. The gluon appears
in the partonic initial states of charged processes only at NLO via the (anti)quark–gluon
channel. At small Bjorken-x’s, the gluon PDF grows much faster than the (anti)quark
PDF. Thus, increasing the energy of the collider, the relative corrections induced by the
(anti)quark–gluon initial states leads to the growth of the K-factors and dominates in their
energy dependence. Also, as can be seen in figure 19 and table 4, these processes present a
larger dependence on the scale variation than the uncharged processes. [Davide: what don’t
you like of the previous sentence Fabio? ]

The differences in the slopes of the curves in the main panels of the plots are also
mostly due to the gluon PDF. Charged processes do not originate from the gluon–gluon
initial state neither at LO nor at NLO. For this reason, their growth with the increasing of
the energy is smaller than for the uncharged processes. All these arguments point to the
fact that, at 100 TeV collider, it will be crucial to have NNLO QCD corrections for tt̄W

±,
tt̄W

±
� and tt̄W

±
Z processes.

The fact that tt̄tt̄ production is the process with the rapidest growth is again due to
percentage content of gluon–gluon-initiated channels, which is higher than for all the other
processes. [Davide: Should we shows plots in figure 20? ]. From the left plot, it is easy
also to note that the scale uncertainty of tt̄tt̄ production is larger than for the tt̄V V -type
processes. In this case, the difference originates from the different powers of ↵s at LO; tt̄tt̄
production is of O(↵

4
s) whereas tt̄V V -type processes are of O(↵

2
s↵

2
). [Davide: Additional

comments??? ]
↵ ↵s O(↵s) O(↵) O(↵
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At the LHC, QCD is everywhere. 
Nowadays, a “standard” prediction in the SM 
is at NLO QCD accuracy. 

NNLO QCD is expected to be of the same 
order of NLO EW            . NNLO EW, 

NNNLO QCD 
…..

of their hierarchy in terms of coupling constants. Secondly, weak contributions due to the

emission of potentially resolvable massive EW vector bosons need to be taken into account,

at least when one is not able to discard them in the context of a fully realistic analysis at

the level of final states. We have shown that, in the case of tt̄H inclusive production, these

processes may in fact not be entirely negligible in precision phenomenology studies.

We have compared the O(α2
Sα

2) predictions with those of O(α3
Sα), which constitute

the dominant (in terms of coupling hierarchy) contribution to NLO effects. We have found

that such a hierarchy, established a priori on the basis of the coupling-constant behaviour, is

amply respected at the level of fully-inclusive cross sections, for which the scale uncertainty

of the latter contribution is significantly larger than the whole O(α2
Sα

2) result. This picture

does change, however, when one emphasises the role of phase-space regions characterised by

some large scale (typically related to a high-pT configuration), which can be done by either

looking directly at the relevant kinematics, or at the inclusive level by applying suitable

cuts; both options have been considered here. The main conclusion is that, in these regions,

effects of weak origin play an important role, and that O(α2
Sα

2) results may be numerically

of the same order as theO(α3
Sα) ones. Therefore, tt̄H production appears to follow the same

pattern as other processes, where Sudakov logarithms can induce significant distortions of

spectra. This implies that the computation of weak contributions is a necessary ingredient

for precision phenomenology at large transverse momenta.
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A recent story from an other hadron collider: the top-quark forward-backward 
asymmetry at the Tevatron. 
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From Tevatron to the LHC
� At Tevatron: valence quarks and 

valence antiquarks of similar momenta 
collide, still 

� LHC is symmetric Ź no forward-backward, 
but same charge asymmetry

� valence quarks collide with sea antiquarks,  
which carry less momenta

� excess of tops quarks in the forward and 
backward regionsproton            antiproton 

CDF collaboration, 
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Definitions of AFB:

Why is AFB interesting?

The electroweak contribution to the forward-backward

asymmetry in top antitop production

Davide Pagani

1 Introduction

Many physical parameters of top quark have been measured during last years (mass, decay width,
branching ratios, cross sections, etc.) and the values obtained are compatible with the theoretical
prediction of the SM. There are anyway some physical observables [1] that present a possible dis-
crepancy from the SM prevision, and the forward-backward asymmetry AFB of top pair production
induced by pp̄ collision [2][3] is one of them.
The definitions of AFB used in the last measurement of CDF [4] are

Att̄
FB =

σ(∆y > 0)− σ(∆y < 0)

σ(∆y > 0) + σ(∆y < 0)
(1)

and

App̄
FB =

σ(yt > 0)− σ(yt < 0)

σ(yt > 0) + σ(yt < 0)
(2)

where ∆y is defined as the difference between the rapidity yt and yt̄. ∆y (not yt) is invariant under
boost along the z-axis so it is the same in the partonic and hadronic rest frame.
The value obtained by CDF are:

Att̄
FB = 0.158± 0.075 (3)

App̄
FB = 0.150± 0.055

The LO predictions of Att̄
FB(A

pp̄
FB) without cuts are around 7.5%(5%) [5] and comes from NLO

QCD corrections of the differential cross section of tt̄ . The most important corrections (NLO of
QCD) to Att̄

FB(A
pp̄
FB) include the NNLO for the differential cross section, but this terms haven’t

been calculated so far because their nontrivial structure.
In order to fill the gap between experimental and theoretical results, different BSM models have
been proposed. Anyway the compatibility with the SM is not ruled out, so at least the calculation
of the NLO corrections of QCD and EW are mandatory. The EW NLO corrections are much
simpler and indeed they have been already calculated. We reexamined and reevaluated the LO and
complete O(α) corrections and we found sizable differences with the preview results.
The calculation of Att̄

FB is presented also with the cuts Mtt̄ > 450 GeV and |∆y| > 1 in order to
make a comparison with the values in [4]

Att̄
FB(Mtt̄ ≥ 450 GeV) = 0.475± 0.114 Att̄

FB(|∆y| ≥ 1) = 0.611± 0.256 (4)

that show the largest discrepancy with QCD LO prediction.

1
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we assign a systematic uncertainty of 0.035 for this e�ect.

Additional systematic uncertainties are evaluated in
a manner similar to the inclusive case. These uncertain-
ties are estimated by repeating the analysis while varying
the model assumptions within their known uncertainties
for background normalization and shape, the amount of
initial- and final-state radiation (ISR/FSR) in pythia,
the calorimeter jet energy scale (JES), the model of fi-
nal state color connection, and parton distribution func-
tions (PDF). Table XII shows the expected size of all
systematic uncertainties. The physics model dependence
dominates.

TABLE XIII: Asymmetry Att̄ at high and low mass compared
to prediction.

selection Mtt̄ < 450 GeV/c2 Mtt̄ ⇥ 450 GeV/c2

data �0.016± 0.034 0.210± 0.049
tt̄+bkg +0.012± 0.006 0.030± 0.007
(mc@nlo)
data signal �0.022± 0.039± 0.017 0.266± 0.053± 0.032
tt̄ +0.015± 0.006 0.043± 0.009
(mc@nlo)
data parton �0.116± 0.146± 0.047 0.475± 0.101± 0.049
mcfm +0.040± 0.006 0.088± 0.013

Table XIII compares the low and high mass asymme-
try to predictions for the data level, the background sub-
tracted signal-level, and the fully corrected parton-level.
The MC predictions include the 15% theoretical uncer-
tainty. At low mass, within uncertainties, the asymmetry
at all correction levels agrees with predictions consistent
with zero. At high mass, combining statistical and sys-
tematic uncertainties in quadrature, the asymmetries at
all levels exceed the predictions by more than three stan-
dard deviations. The parton-level comparison is summa-
rized in Fig. 14. For Mtt̄ � 450 GeV/c2, the parton-level
asymmetry at in the tt̄ rest frame is Att̄ = 0.475± 0.114
(stat+sys), compared with the MCFM prediction of
Att̄ = 0.088± 0.013.

VIII. CROSS-CHECKS OF THE MASS
DEPENDENT ASYMMETRY

The large and unexpected asymmetry at high mass de-
mands a broader study of related e�ects in the tt̄ data.
We look for anomalies that could be evidence of a false
positive, along with correlations that could reveal more
about a true positive. In order to avoid any assumptions
related to the background subtraction, we make compar-
isons at the data level, appealing when necessary to the
full tt̄ + bkg simulation models.

FIG. 14: Parton-level asymmetry in �y at high and low mass
compared to mcfm prediction. The shaded region represents
the total uncertainty in each bin.
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FIG. 15: Distribution of tt̄ reconstruction �2. Black crosses
are data, histogram is sig+bkg prediction.The last bin on the
right contains all events with �2 > 100.

A. Lepton Type

All of our simulated models predict asymmetries that
are independent of the lepton type: pythia predicts
asymmetries that are consistent with zero, and the Octet
models predict asymmetries that are consistent with each
other. The data are shown in Table XIV. At high mass,
both lepton types show positive asymmetries consistent
within errors.

Only NLO QCD,
let’s see SM 
prediction!

Theory Experiment

AFB(%) Att̄
FB App̄

FB

data 15.8± 7.4 15.0± 5.5

MCFM 5.8± 0.9 3.8± 0.6
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FB ∼ 0.25×AQCD

FB (3)

pp̄ → tt̄+X

q

q

t

tg

q

q

t

t

q

g

g

t

Figure 1: Real emissions of gluon: photon in the propagator

yt =
1

2
log

(E + pz
E − pz

)

(4)

∆y = yt − yt̄ (5)

σ(H1H2 → tt̄+X) = σ(p1p2 → tt̄+X)⊗
[

fp1,H1
(x1)fp2,H2

(x2) + fp1,H2
(x1)fp2,H1

(x2)
]

(6)

Mp1p2→tt̄+X(kp1
, kp2

, kt, kt̄, kX) = Mp1p2→tt̄+X(k′p1
, k′p2

, k′t, k
′

t̄, k
′

X) (7)

1

D0 and especially CDF measured values 
for the forward-backward asymmetry that 
are larger than the SM prediction. 

But which SM prediction?

10



Correct interpretation of the (B)SM signal

A recent story from an other hadron collider: the top-quark forward-backward 
asymmetry at the Tevatron. 

Surprisingly (No Sudakov enhancement), the NLO EW induces corrections of 
order 20-25%. DP, Hollik ‘11
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NNLO QCD and NLO EW are 
essential for a reliable theoretical 
prediction. 

Missing higher-orders in the 
theoretical predictions may be 
misinterpreted as BSM signals. 

Czakon, Fiedler, Mitov ‘14

pp̄ → tt̄+X
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Figure 1: Real emissions of gluon: photon in the propagator
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Figure 2: Real emissions of gluon: photon in the propagator
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Figure 3: Real emissions of gluon: photon in the propagator
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Higgs predictions at NNLO

RobertHarlander®

be careful : just illustrative example, not very precise

Importance of NLO and NNLO QCD corrections



NLO Corrections 

How do I calculate them? 

you can do it with MadGraph …. 
but you need to know what’s going on in 

order to understand the results 

13



This is how an event at the LHC looks like: Calculating the structure of scattering events at the LHC is tricky…

2 / 44

We are going to discuss how to calculate with higher precision the 
central part of this picture: THE HARD SCATTERING PROCESS 



Marco Zaro, 23-24/03/2022 7

How to compute a cross-section

pp

µFµF
x1E x2E

`+ `�

long distance
long distance

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b

The hard scattering process

Actually we will mostly focus on how to improve the evaluation of 
the parton-level cross section, but also PDFs are equivalently 

important. 
15



MadLoop

 MC@NLONinja, Collier
CutTools, …

FKS 

FKS MadGraph
aMC@NLO

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro  ’14 
Frederix, Frixione, Hirschi, DP, Shao, Zaro  ‘18

The structure of MadGraph resembles the steps of a calculation that 
in principle one could do with pencil and paper: 



MadLoop

 MC@NLONinja, Collier
CutTools, …

FKS 

FKS MadGraph
aMC@NLO

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro  ’14 
Frederix, Frixione, Hirschi, DP, Shao, Zaro  ‘18

The structure of MadGraph resembles the steps of a calculation that 
in principle one could do with pencil and paper: 

Generation of loop 
diagrams and UV 

counterterms 

Evaluation of the 
loop diagrams 

Regularisation of IR 
divergencies in loop 
and real diagrams. 

NOT relevant for 
fixed order 



QCD corrections 
(let’s forget about EW until further notice) 

18
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Let’s start with a concrete example: pp → tt̄

The LO cross section originates from the simplest diagrams you can 
imagine for all the possible partonic processes stemming from the partons 
in the proton:  and . qq̄ → tt̄ gg → tt̄u u~ > t t~ WEIGHTED=2 page 1/1

Diagrams made by MadGraph5_aMC@NLO

u

1

u~

2

g

t

3

t~

4

 diagram 1 QCD=2, QED=0
g g > t t~ WEIGHTED=2 page 1/1

Diagrams made by MadGraph5_aMC@NLO

g

1

g

2

g

t

3

t~

4

 diagram 1 QCD=2, QED=0

g

1

t

3

t~

g
2

t~
4

 diagram 2 QCD=2, QED=0

g

1

t~

4

t

g
2

t

3

 diagram 3 QCD=2, QED=0

g g > t t~ WEIGHTED=2 page 1/1

Diagrams made by MadGraph5_aMC@NLO

g

1

g

2

g

t

3

t~

4

 diagram 1 QCD=2, QED=0

g

1

t

3

t~

g
2

t~
4

 diagram 2 QCD=2, QED=0

g

1

t~

4

t

g
2

t

3

 diagram 3 QCD=2, QED=0

These are the diagrams you get via the commands 
in MG5: 
  
generate p p > t t~ 
output ttbarLO_folder 

and you can then calculate the cross section: 
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 at LOpp → tt̄

3 51. Cross-Section Formulae for Specific Processes

d‡

dx dy
(eN æ eX) = 4fi–

2
xs

Q4
1
2

Ë
1 + (1 ≠ y)2

È

◊
Ë4
9(u(x) + u(x) + . . . ) + 1

9(d(x) + d(x) + . . .)
È

(51.17)

where now s = 2ME is the cm energy squared for the electron-nucleon collision, and we have
suppressed contributions from higher mass quarks.

Similarly,

d‡

dx dy
(‹N æ ¸

≠
X) = G

2
F

xs

fi
[(d(x) + . . .) + (1 ≠ y)2(u(x) + . . .)] (51.18)

and
d‡

dx dy
(‹N æ ¸

+
X) = G

2
F

xs

fi
[(d(x) + . . .) + (1 ≠ y)2(u(x) + . . .)] . (51.19)

Quasi-elastic neutrino scattering (‹µn æ µ
≠

p, ‹µp æ µ
+

n) is directly related to the crossed
reaction, neutron decay. The formula for the di�erential cross section is presented, for example, in
N.J. Baker et al., Phys. Rev. D23, 2499 (1981).

51.3 Hadroproduction of heavy quarks

For hadroproduction of heavy quarks Q = c, b, t, it is important to include mass e�ects in the
formulae. For qq̄ æ QQ̄, one has

d‡

dœ
(qq̄ æ QQ̄) = –

2
s

9s3

Û

1 ≠
4m

2
Q

sË
(m2

Q ≠ t)2 + (m2
Q ≠ u)2 + 2m

2
Qs

È
, (51.20)

while for gg æ QQ̄ one has

d‡

dœ
(gg æ QQ̄) = –

2
s

32s

Û

1 ≠
4m

2
Q

s

5 6
s2 (m2

Q ≠ t)(m2
Q ≠ u)≠

≠
m

2
Q

(s ≠ 4m
2
Q

)
3(m2

Q
≠ t)(m2

Q
≠ u)+

4
3

(m2
Q

≠ t)(m2
Q

≠ u) ≠ 2m
2
Q

(m2
Q

+ t)
(m2

Q
≠ t)2

+4
3

(m2
Q

≠ t)(m2
Q

≠ u) ≠ 2m
2
Q

(m2
Q

+ u)
(m2

Q
≠ u)2

≠3
(m2

Q
≠ t)(m2

Q
≠ u) + m

2
Q

(u ≠ t)
s(m2

Q
≠ t)

≠3
(m2

Q
≠ t)(m2

Q
≠ u) + m

2
Q

(t ≠ u)
s(m2

Q
≠ u)

D

. (51.21)

1st December, 2021

Easy calculation that can be done also with pencil and paper, for 
example for the  initial state (  case is similar): qq̄ gg

Notice that the cross sections is proportional to , as the squared of the 
amplitudes I have shown before. 

α2
s

Remember that  is not a constant 
and it runs, so your cross section will 
depend on which scale you will 
choose for it. 

αs
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 at NLO QCDpp → tt̄

For a given final state if LO ~ , NLO QCD corrections are all the 
contributions proportional to the inclusive production of the same final 
state at the order .

αn
s

αn+1
s

In the case of   this means:   of order . pp → tt̄ pp → tt̄(+X) α3
s

In MG5 this is equivalent to ask 
  
generate p p > t t~ [QCD] 
output ttbarNLO_folder 

and you can then calculate the cross section: 

But let’s see some diagrams that emerge at this order. 



 at NLO QCDpp → tt̄

u~ u > t t~ QED^2=0 QCD^2=6 [ all= QCD QED ] page 1/2

Diagrams made by MadGraph5_aMC@NLO

u~

1

u

2

g

t

3

t~

4

gg
g

loop diagram 1 QCD=4, QED=0

u~

1

u

2

g

t

3

g

t

t~

4

g

loop diagram 2 QCD=4, QED=0

u~

1

u

2

g

t

3

t~

g

t~

4

t~

loop diagram 3 QCD=4, QED=0

t

3

t~

4

g

u~

1

u~
g

u
2

u

loop diagram 4 QCD=4, QED=0

t

3

t~

4

g

u~

1

g
u~

u
2

g

loop diagram 5 QCD=4, QED=0

u~

1

g

u~

u
2

g

t~

4

t

t

3

loop diagram 6 QCD=4, QED=0

u g > t t~ u QED^2=0 QCD^2=6 [ all= QCD QED ] page 1/1

Diagrams made by MadGraph5_aMC@NLO

u

1

g

2

u

t

3

t~

4

g

u

5

real diagram 1 QCD=3, QED=0

u
1

u

5

g

g
2

t
3

t

t~ 4

real diagram 2 QCD=3, QED=0

u
1

u

5

g

g
2 t~

4

t~

t 3

real diagram 3 QCD=3, QED=0

u

1

u

5

g

t

3

t~

4

g

g
2

real diagram 4 QCD=3, QED=0

g
2

u
5

u

t

3

t~

4

g

u

1

real diagram 5 QCD=3, QED=0

one-loop diagrams…. but also real-emission ones 

Notice that I have 
shown a case where the 
initial state does not 
even show up at LO. 
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  at NLO QCD (anatomy of the diagrams)pp → tt̄

LO      "(α2
s )    

   
qq̄ → tt̄ : |ℳtree |2

gg → tt̄ : |ℳtree |2

23



}


  at NLO QCD (anatomy of the diagrams)pp → tt̄

LO      "(α2
s )    

   
qq̄ → tt̄ : |ℳtree |2

gg → tt̄ : |ℳtree |2

NLO   "(α3
s )    

   
   
   
   
   

qq̄ → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
gg → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
qq̄ → tt̄g : |ℳtree |2

gg → tt̄g : |ℳtree |2

qg → tt̄q : |ℳtree |2

q̄g → tt̄q̄ : |ℳtree |2

}


V
irtual 

R
eal em

ission 
Expansion at order  

 or  of  "(α2
s ) "(α3

s )

|ℳ |2 =
∞

∑
i=0

ℳi−loop

2

24



IR 
 divergent! }


  at NLO QCD (anatomy of the diagrams)pp → tt̄

LO      "(α2
s )    

   
qq̄ → tt̄ : |ℳtree |2

gg → tt̄ : |ℳtree |2

NLO   "(α3
s )    

   
   
   
   
   

qq̄ → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
gg → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
qq̄ → tt̄g : |ℳtree |2

gg → tt̄g : |ℳtree |2

qg → tt̄q : |ℳtree |2

q̄g → tt̄q̄ : |ℳtree |2

}


V
irtual 

R
eal em

ission 

UV and IR finite 

UV (ultraviolet) divergencies 
are canceled via 
renormalisation. 

IR (infrared) divergencies are 
canceled via combination of 
virtual+real (KLN) and 
subtraction to the PDFs. 

Expansion at order  
 or  of  "(α2

s ) "(α3
s )

|ℳ |2 =
∞

∑
i=0

ℳi−loop

2

UV and IR divergent! 
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 divergent! }


  at NLO QCD (anatomy of the diagrams)pp → tt̄

LO      "(α2
s )    

   
qq̄ → tt̄ : |ℳtree |2

gg → tt̄ : |ℳtree |2

NLO   "(α3
s )    

   
   
   
   
   

qq̄ → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
gg → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
qq̄ → tt̄g : |ℳtree |2

gg → tt̄g : |ℳtree |2

qg → tt̄q : |ℳtree |2

q̄g → tt̄q̄ : |ℳtree |2

}


V
irtual 

R
eal em

ission 

UV and IR finite 

UV (ultraviolet) divergencies 
are canceled via 
renormalisation. 

IR (infrared) divergencies are 
canceled via combination of 
virtual+real (KLN) and 
subtraction to the PDFs. 

NOTE THAT WITHIN  AT NLO WE HAVE ALSO  AT LO!tt̄ tt̄ + 1 jet

UV and IR divergent! 

Expansion at order  
 or  of  "(α2

s ) "(α3
s )

|ℳ |2 =
∞

∑
i=0

ℳi−loop

2



Loop Diagrams
Before looking at renormalisation, let’s see how loop diagrams are 
computed in MadGraph.
While for a process like  one may even use textbook methods, 
this approach would not in general work for complex processes and 
especially for the automation.

pp → tt̄
g g > t t t~ t~ QED^2=0 QCD^2=10 [ all= QCD QED ] page 113/169

Diagrams made by MadGraph5_aMC@NLO
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loop diagram 1636 QCD=6, QED=0
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loop diagram 1637 QCD=6, QED=0
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loop diagram 1638 QCD=6, QED=0
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loop diagram 1639 QCD=6, QED=0
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g
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g
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t
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g

t
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loop diagram 1640 QCD=6, QED=0

g

1
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t

g
2

t

t
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g
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t~
5

g

t~
6

loop diagram 1641 QCD=6, QED=0

g

1

t~

t

g
2

t

t
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g
t 4
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t~
6

g

t~
5

loop diagram 1642 QCD=6, QED=0

g

1

t~

t

g
2

t

t
4

g
t 3
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t~
5

g

t~
6

loop diagram 1643 QCD=6, QED=0

g

1

t~

t

g
2

t

t
4

g
t 3

t~

t~
6

g

t~
5

loop diagram 1644 QCD=6, QED=0

t 3
t~

g

t
4

t

t~
6

g

g

2

g

1

g

t~ 5

loop diagram 1645 QCD=6, QED=0

t 3
t~

g

t
4

t

t~
5

g

g

2

g

1

g

t~ 6

loop diagram 1646 QCD=6, QED=0

g
1

t~t

t3

g

t~5

t

g2

t
t

4

g

t~

6

loop diagram 1647 QCD=6, QED=0

g

1

t

t~

g
2

t~

t~ 6

g
t 4

t~

t~
5

g

t
3

loop diagram 1648 QCD=6, QED=0

g
1

t~t

t4

g

t~6

t

g2

t
t

3

g

t~

5

loop diagram 1649 QCD=6, QED=0

g

1

t~

t

g
2

t

t
4

g
t~ 6

t

t
3

g

t~
5

loop diagram 1650 QCD=6, QED=0

These are just 9 of the 2478 diagrams 
entering the 1-loop amplitude for 

. 

Try just to calculate one by hand 
(notice that there are 6 propagators!) 
and you can realise the challenge .. 

gg → tt̄tt̄

Next slides are stolen from Marco Zaro, 
who gave this lecture at the 2022 edition of 
this school. 
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Loops 
how to calculate them 

28



Marco Zaro, 23-24/03/2022

NLO
 EW

 au
to

mate
d

20
15
→

12

NLO (pre)history

• NLO evolution: 
• e.g. pp→W+n jets

n=

year

1 3 52 40
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pa

Bla
ck
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Sh

er
pa

#virt diag
ud̄→W+ ng

2 43 416 4489

NLO revolution!
57026 …
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k1

kn

k2

k3 k4

k5
D0

D1

D2

D3
Dm�1

q + k1

q . . .

q
+
. . .+

k
5

l
l

l

• Consider a m-point one-loop diagram with n external momenta

• The integral to compute is

Computing loops numerically

39

d�V = 2<[ ]

Z
ddl

N(l)

D0D1 . . . Dm�1
Di = (l + pi)

2 �m2
i

p1 = k1

p2 = k2

p3 = k3 + k4 + k5
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A hint…

• Any one-loop integral can be cast in the form

• It is a linear combination of scalar integrals
• If d=4+!, only scalar integrals with up to 4 

denominators are needed → the basis is finite!
• The coefficients depend only on external momenta and 

parameters

40

Z
ddl

N(l)

D0D1 . . . Dm�1
=

X
coe↵i

Z
ddl

1

Di0Di1 . . .
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Scalar integrals

• Scalar integrals are known and available as libraries 
FF (van Oldenborgh, CPC 66,1991) 
QCDLoop (Ellis, Zanderighi, arXiv:0712.1851) 
OneLOop (Van Hameren, arXiv:1007.4716)  

41

M
1loop =

X

i0,i1,i2,i3

di0i1i2i3Di0i1i2i3

+
X

i0,i1,i2

ci0i1i2Ci0i1i2

+
X

i0,i1

bi0i1Bi0i1

+
X

i0

ai0Ai0

+R+O(")

Di0i1i2i3 =

Z
ddl

1

Di0Di1Di2Di3

Ci0i1i2 =

Z
ddl

1

Di0Di1Di2

Bi0i1 =

Z
ddl

1

Di0Di1

Ai0 =

Z
ddl

1

Di0

Box

Triangle

Bubble

Tadpole
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How to compute the coefficients?

• Several techniques exist
• Computation of loop MEs
• Tensor reduction
• Generalized unitarity
• Integrand reduction

Passarino, Veltman,1979
Denner, Dittmaier, hep-ph/509141

Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + …
Ellis, Giele, Kunszt,  arXiv:0708.2398 

+ Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007
Del Aguila, Pittau, hep-ph/0404120

Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710
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Integrand reduction

• Can we take away the integral? 

• Of course not, we must take into account for terms 
which integrate to 0, the so-called spurious terms:

Z
ddl

N(l)

D0D1 . . . Dm�1
=

X
coe↵i

Z
ddl

1

Di0Di1 . . .

N(l)

D0D1 . . . Dm�1
6=

X
coe↵i

1

Di0Di1 . . .

N(l)

D0D1 . . . Dm�1
=

X
(coe↵i + spuriousi(l))

1

Di0Di1 . . .
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Spurious terms

• The functional form of the spurious terms is known and 
depends on the rank (powers of l in the numerator) and 
on the number of denominators Del Aguila, Pittau, hep-ph/0404120

• E.g. a rank-1 box

• The integral is 0

44

d̃i0i1i2i3(l) = d̃i0i1i2i3 ✏
µ⌫⇢� lµp⌫1p

⇢
2p

�
3

Z
ddl

d̃i0i1i2i3(l)

D0D1D2D3
= d̃i0i1i2i3

Z
ddl

✏µ⌫⇢� lµp⌫1p
⇢
2p

�
3

D0D1D2D3
= 0
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OPP decomposition
Ossola, Papadopoulos, Pittau, hep-ph/0609007

• If we multiply both sides times D0D1…Dm-1 we get

45
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D0D1 . . . Dm�1
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Getting the coefficients

• N(l) is known from the diagrams and the functional 
form of spurious terms is known too
• We can sample N(l) at various values of the loop momentum, 

and get a system of linear equations
• The sampling can be done numerically
• By choosing smart values of l (in the complex plane), the 

system can be greatly simplified
• E.g. we can choose l such that
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D1(l
±) = D2(l

±) = D3(l
±) = D4(l

±) = 0

N(l±) = (d1234 + d̃1234(l
±))

Y

i 6=1,2,3,4

Di(l
±)
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Getting the coefficient:
recap

• For each PS point, we have to solve a system of 
equations numerically

• The system reduces when special values of the loop 
momentum are chosen

• N(l) can be the numerator of the full matrix element, of 
a single diagram or anything in between

• For a given PS point, the numerator has to be sampled 
several times (~50 for a 4-point diagrams)
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The evil is in the details:
Complications in d dimensions

• So far, we did not care much about the number of 
dimensions we were using

• In general, external momenta and polarisations are in 4 
dimensions; only the loop momentum is in d

• To be more rigorous, we compute the integral

49

Z
ddl

N(l, l̃)

D̄0D̄1 . . . D̄m�1
l̄ = l + l̃

D̄i = (l̄ + pi)
2 �mi = (l + pi)

2 �m2
i + l̃2 = Di + l̃2

l · l̃ = 0 l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃

d-dim 4-dim ε-dim
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Implications

• The reduction should be consistently done in d 
dimensions
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Implications

• The reduction should be consistently done in d 
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That is why the rational terms are needed



Marco Zaro, 23-24/03/2022

The rational terms
OPP, arXiv:0802.1876

• In the OPP method, two types of rational terms are there: 
R=R1+R2

• Both originate from the UV part of the model, but only R1 can 
be computed in the OPP decomposition

• R1 originates from the denominators (propagators) in the loops

• The denominator structure is known, so these terms can be 
directly included in the OPP reduction

• R1 contributions are proportional to
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R2 Feynman rules

• In a renormalizable theory, only up to 4-point integrals 
contribute to the R2 terms

• They can be included in the computation using special Feynman 
rules (as it is done for the UV renormalisation). For example:

• Similarly to the UV counterterms, the R2 terms are model 
dependent and need to be explicitly computed for BSM models 
This is now automated for renormalizable theories
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p

µ1,a1 µ2,a2
=

ig2Ncol

48π2
δa1a2
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(
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)
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Nf
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]
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= −
g3Ncol

48π2

(

7

4
+ λHV + 2

Nf
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)

fa1a2a3 Vµ1µ2µ3(p1, p2, p3)
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µ2,a2µ1,a1

= −
ig4Ncol

96π2

∑

P (234)

{

[ δa1a2δa3a4 + δa1a3δa4a2 + δa1a4δa2a3

Ncol

+ 4Tr(ta1ta3ta2ta4 + ta1ta4ta2ta3) (3 + λHV )

−Tr({ta1ta2}{ta3ta4}) (5 + 2λHV )
]

gµ1µ2gµ3µ4

+12
Nf

Ncol
Tr(ta1ta2ta3ta4)

(

5

3
gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ2µ3gµ1µ4

)}

µ, a

k

l

=
ig3

16π2

N2
col − 1

2Ncol
taklγµ (1 + λHV )

p

l k
=

ig2

16π2

N2
col − 1

2Ncol
δkl(−/p + 2mq)λHV

Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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Draggiotis, Garzelli, Papadopoulos, Pittau, arXiv:0903.0356

Degrande, arXiv:1406.3030
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MadLoop 
Hirschi et al, arXiv:1103.0621

• How to automate loop computation?
• Exploit MadGraph’s capabilities to generate tree-level diagrams
• Loop diagrams with n external legs can be cut, leading to tree 

diagrams with n+2 legs
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≡

≡

• All diagrams with 2 extra particles are 
generated, those which are needed are 
filtered out

• Each diagram is assigned a tag, which helps 
removing mirror/cyclic configurations

• Additional filters to remove tadpole/
bubbles on external legs

• Contract with Born, do the color algebra, 
re-glue the cut particle, etc…

• Add UV and R2 counterterms as extra 
vertices



Renormalisation 
a focus on  dependence μr
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Going back to renormalisation:
Once diagrams are calculated, one needs to eliminate UV divergencies. 
In a renormalisable theory a finite set of renormalisation conditions is 
sufficient. 

Now I want to focus to the case of , which is typically defined in the so-
called  scheme. The philosophy behind it is precisely a Minimal Subtraction , 
i.e., removing the  pole and promote the regularisation scale to the 
renormalisation scale. 

δUVαs
MS

1/ϵ

We will see in more detail for the EW case, but the idea is the following. For 
automatising the renormalisation procedure one has to implement a set of new 
Feynman rules corresponding to UV counterterms, such that UV divergencies 
are canceled. These terms depend on the renormalisation of physical parameters 

 and wave-function renormalisation . (δUVαs, δUVmψ) (δUVZg, δUVZψ)

   with   and  δUVαs = − αs

4π
β0Δ Δ = 1/ϵ − γ + log(4π) β0 = 11 − 2

3 nf
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 renormalisationαs
For a tree-level amplitude  factorising a power , the UV part related to 
the renormalisation of  in the corresponding one-loop amplitude, , has 
a form of the kind: 

ℳtree αn
s

αs ℳαs−UV
1−loop

ℳαs−UV
1−loop = ∼ ℳtree × n

αs

4π
β0(Δ + log(μ2

R /Q2))

So then if I look to the renormalised one-loop amplitude  it contains a 
term of the form  

ℳren
1−loop

ℳαs−UV
1−loop + ℳtreenδUVαs = ℳtree × n

αs

4π
β0 log(μ2

R /Q2)

But remember that we have assumed  proportional to  and   ℳtree αn
s

together with  there is 
the log of  and another 
physical scale  

Δ
μR

Q

Remember we are looking to NLO, so terms of  are beyond our accuracy target! "(αn+2
s )

Note that since it is  and not 
,  can be half-integer 

ℳ
|ℳ |2 n

(αs(μR))
n

= αs(μ0)
1 + αs

4π β0 log(μ2
R /μ2

0)

n

∼ (αs(μ0))
n

× (1 − n
αs

4π
β0 log(μ2

R /μ2
0))
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Figure 19. NLO and LO cross sections for tt̄tt̄ production at 13 TeV. Comparison of the scale
dependence in the interval µc

/8 < µ < 8µ
c for the four different choices of the central value µ

c: µg,
µa, µLO

a , 2mt.

2.3 tt̄tt̄ production

In this section we present results for tt̄tt̄ production. We start by showing in fig. 19 the
scale dependence of the LO (blue lines) and NLO (red lines) total cross section at 13 TeV.
As for the previous cases, we vary µ = µr = µf by a factor eight around the central value
µ = µg (solid lines), µ = µa (dashes lines) and, due to the much heavier final state, µ = 2mt

(dotted lines). In this case we also show with a dot-dashed line the dependence of the NLO
cross section on an alternative definition of average scale µ

LO
a =

1

N

P
i=1,N

mT,i, where
possible additional partons appearing in the final state do not contribute.

As expected, predictions relative to µg and µ
LO
a are very close. Conversely, µa and

µ
LO
a show a non-negligible difference. Note that the value of µa and µ

LO
a is the same for

Born and and virtual contributions for any kinematic configuration. Thus, the difference
between dashed and dot-dashed lines is formally an NNLO effect that arise from differences
in the scale renormalisation for real radiation events only. To investigate the origin of this
effect, we have explicitly checked that the difference is mainly induced by the corresponding
change in the renormalisation scale and not of the factorisation scale. Similar behaviour is
also found in tt̄V and tt̄V V processes, yet since the masses of the final-state particles are
different and the ↵s coupling order lower, µg and µ

LO
a lines are more distant than in tt̄tt̄

production.
Since the LO cross section is of O(↵

4
s), it strongly depends on the value of the renor-

malisation scale, as can be seen in fig. 19. This dependence is considerably reduced at NLO
QCD accuracy in the standard interval µg/2 < µ < 2µg. Conversely, for µ < µg/4 the value
of the cross section falls down rapidly, reaching zero for µ ⇠ µg/8. This is a signal that
in this region the dependence of the cross section on µ is not under control. Qualitatively

– 28 –

Maltoni, DP, Tsinikos ‘15

For instance:  ~  at LO. 

By varying  by a factor of 2 (this is the HEP-
ph dogma) up/down, the scale uncertainty 
moves from:  
-40% +80% at LO to 
-25% +25% at NLO!  

pp → tt̄tt̄ α4
s

μR
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scale dependence of the LO (blue lines) and NLO (red lines) total cross section at 13 TeV.
As for the previous cases, we vary µ = µr = µf by a factor eight around the central value
µ = µg (solid lines), µ = µa (dashes lines) and, due to the much heavier final state, µ = 2mt

(dotted lines). In this case we also show with a dot-dashed line the dependence of the NLO
cross section on an alternative definition of average scale µ
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a show a non-negligible difference. Note that the value of µa and µ
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a is the same for

Born and and virtual contributions for any kinematic configuration. Thus, the difference
between dashed and dot-dashed lines is formally an NNLO effect that arise from differences
in the scale renormalisation for real radiation events only. To investigate the origin of this
effect, we have explicitly checked that the difference is mainly induced by the corresponding
change in the renormalisation scale and not of the factorisation scale. Similar behaviour is
also found in tt̄V and tt̄V V processes, yet since the masses of the final-state particles are
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For instance:  ~  at LO. 

By varying  by a factor of 2 (this is the HEP-
ph dogma) up/down, the scale uncertainty 
moves from:  
-40%/+80% at LO to 
-25%/+25% at NLO!  

pp → tt̄tt̄ α4
s

μR

Actually, it is a bit more complex. 
This plot depends also on the factorisation 
scale, but for discussing this we need to 
look before at IR divergencies. 
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Infrared divergencies 
how to eliminate them 
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Where do IR divergencies come from? 

Marco Zaro, 23-24/03/2022

Branching

17

pq + pg
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• When the integral over the phase-
space of the gluon is performed, one 
can have (pq+pg)2=0

• Since (pq+pg)2=2EqEg(1-cos!) it 
happens when the gluon is soft (Eg=0) 
or collinear to the quark (!=0)

• In both cases, the propagator leads to 
a divergent cross section

�NLO =

Z

n

↵b

s
d�0 +

Z

n

↵b+1
s

d�V +

Z

n+1
↵b+1
s

d�R

∼ 1
(pq + pg)2 − m2q

= 1
2pqpg

=

= 1

2EqEg (1 − 1 − m2q /E2q cos(θgq))
This expression diverges if: 

: soft divergence 
and or  if : collinear divergence 
Eg → 0

θgq → 0 mq = 0
If ́the  momentum is integrated in  dimensions, these 
configurations lead to  poles and even  poles in the case  
and  and .

pg d = 4 − 2ϵ
1/ϵ 1/ϵ2 mq = 0

Eg → 0 θgq → 0
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Divergencies have a “simple” structure

Marco Zaro, 23-24/03/2022

The subtraction term

• The subtraction term C should be chosen such that:
• It exactly matches the singular behaviour of R
• It can be integrated numerically in a convenient way
• It can be integrated exactly in d dimension, leading to the soft 

and/or collinear poles in the dimensional regulator
• It is process independent (overall factor times Born)

• QCD comes to help: structure of divergences is universal:

27

p

k
p+

k

(p+ k)2 = 2EpEk(1� cos ✓pk)

• Collinear singularity:

• Soft singularity:

lim
p//k

|Mn+1|2 ' |Mn|2 PAP (z)

lim
k!0

|Mn+1|2 '
X

ij

|M ij
n |2 pipj

pik pjk

and
∑

|Mg|2 = 2g2 CF
(1 − z)

k2
t

(
1 + z2

1 − z

)

N Tr[p̂′Γp̂Γ+] . (151)

The last factor with the trace corresponds to the Born amplitude squared. So the one-gluon emission
process factorizes in the collinear limit into the Born process times a factor which is independent of the
beam’s nature! If we add the gluon phase-space:

[dk] ≡ d3k

(2π)32k0
=

dk‖
k0

dφ

2π
1

8π2

dk2
⊥

2
=

dz

(1 − z)
1

16π2
dk2

⊥ , (152)

we get:
∑

|Mg|2 [dk] =
dk2

⊥
k2
⊥

dz
(
αs

2π

)
Pqq(z)

∑
|M0|2 , (153)

where
Pqq(z) = CF

1 + z2

1 − z
(154)

is the so-called Altarelli-Parisi splitting function for the q → q transition (z is the momentum fraction
of the original quark taken away by the quark after gluon emission). We are now ready to calculate the
corrections to the parton-model cross-section:

σg =
∫

dx f(x)
1

flux

∫
dz

dk2
⊥

k2
⊥

(
αs

2π

)
Pqq(z)

∑
|M0|2 2πδ(p′2) . (155)

Using (p′)2 = (p − k + q)2 ∼ (zp + q)2 = (xzP + q)2 and

δ(p′2) =
1

2P · q
1
z
δ(x − xbj

z
) =

xbj

z
δ(x − xbj

z
) , (156)

we finally obtain:
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(∑
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Q2

)
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i

e2
i xbj

αs

2π

∫
dk2

⊥
k2
⊥

∫
dz

z
Pqq(z) fi

(
xbj

z

)
. (157)

We then find that the inclusion of the O(αs) correction is equivalent to a contribution to the parton
density:

fi(x) → fi(x) +
αs

2π

∫
dk2

⊥
k2
⊥

∫ 1

x

dz

z
Pqq(z) fi

(
x

z

)
. (158)

Notice the presence of the integral
∫

dk2
⊥/k2

⊥. The upper limit of integration is proportional to Q2. The
lower limit is 0. Had we included a quark mass, the propagator would have behaved like 1/(k2

⊥ + m2).
But the quark is bound inside the hadron, so we do not quite know whatm should be. Let us then assume
that we cutoff the integral at a k⊥ value equal to some scale µ0, and see what happens. The effective
parton density becomes:

f(x,Q2) = f(x) + log
(

Q2

µ2
0

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (159)

The dependence on the scale µ0, which is a non-perturbative scale, can be removed by defining f(x,Q2)

70

For instance, being  in the collinear and massless limit: z = (p + k)/p

Therefore knowing the Born amplitude, the coefficient in front of the 

 poles is also known, since only the integrals of  and  

have to be calculated. 

1/ϵ PXY
pipj

pik pjk
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quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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Figure 3: Real emissions of gluon

initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Cancellations between reals and loops

According to the Kinoshita-Lee-Nauenberg (KLN) theorem: 
If you are inclusive over the possible final states, the IR divergencies 
related the final state (FS) cancel: 

LOOP+REALS at a given  => no IR FS divergencies at  "(αn
s ) "(αn

s )

Example: 

The interference of these 
2 diagrams has soft  

divergencies, 

which cancel exactly 
against the interference 
of these two diagrams… 

…if one looks at inclusive  production tt̄
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IR safety
I cannot require the calculation of the cross section of “exactly the  ” 
final state: it is not IR safe. 
Indeed, the presence of an infinitesimally soft gluon would change the 
categorisation of the event —> DIVERGENT quantity.   

tt̄

The same story for the cross section of  production, where  is a 
light quark. The presence of an infinitesimally soft, or hard and 
collinear, gluon would lead to the same problem. 

tt̄q q

Philipp Schieferdecker (KIT)

Fastjet
• C++ library providing fast (!) JA 

implementation
★ kT, Cambridge/Aachen, Anti-kT, 

SISCone

★ Sequential Clustering: yielding bit-

identical results w.r.t. prior 

implementations featuring 

dramatically improved 

performance

• Fastjet also introduces concept of 
jet area for sequential clustering 
algorithms (“jet catchment area”)
★ actually, for all IRC-safe algorithms

★ important to address UE & PU 

contributions which will be 

significant at the LHC, and are 

typically measured per unit area of 

the calorimeter surface

Number of input particles

ti
m

e
 (

s
)
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Jets observables are precisely IR-safe 
quantities that deals with the hard 
radiation of light colored particles. 

Jets are IR-safe final-state objects, 
while partons are not!
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… still the divergencies do not cancel for the initial state

It looks bad, but it is actually the reason why the dependence on the 
factorisation scale diminishes. Let’s see why: 

in terms of the parton density f measured at a large, perturbative scale µ2:

f(x, µ2) = f(x) + log
(

µ2

µ2
0

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (160)

We can then perform a subtraction, and write:

f(x,Q2) = f(x, µ2) + log
(

Q2

µ2

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (161)

The scale µ plays here a similar role to the renormalization scale introduced in the second lecture. Its
choice is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the
following “renormalization-group invariance” condition:

df(x,Q2)
d ln µ2

= µ2 df(x, µ2)
dµ2

− αs

2π
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x

dz
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and then
µ2 df(x, µ2)

dµ2
=

αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z
, µ2

)
. (163)

This equation is usually called the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. As in
the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation – which is the result of RG-invariance – resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2

µ2 . We can then expand f(x, t) in powers of t:

f(x, t) = f(x, 0) + t
df

dt
(x, 0) +

t2

2!
d2f

dt2
(x, 0) + . . . (164)

The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
entiating it:
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The n-th term in this expansion, proportional to (αs t)n, corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:

dfq(x, t)
dt

=
αs

2π

∫ 1

x

dz

z

[
Pqq(z) fi(

x

z
, t) + Pqg(z)fg(

x

z
, t)
]
, with Pqg =

1
2
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z2 + (1 − z)2

]
. (166)

In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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affect the evolution of the gluon density fg(x):
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with

Pgq(z) = Pqq(1 − z) = CF
1 + (1 − z)2

z
and Pgg(z) = 2CA

[1 − z

z
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z

1 − z
+ z(1 − z)

]
. (168)

Defining the moments of an arbitrary function g(x) as follows:

gn =
∫ 1

0

dx

x
xn g(x) ,

it is easy to prove that the evolution equations turn into ordinary linear differential equations:

df (n)
i

dt
=
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2π
[P (n)

qq f (n)
i + P (n)

qg f (n)
g ] , (169)

df (n)
g

dt
=

αs

2π
[P (n)

gg fg + P (n)
gq f (n)

i ] . (170)

5.3. Properties of the evolution equations

We now study some general properties of these equations. It is convenient to introduce the concepts of
valence (V (x, t)) and singlet (Σ(x, t)) densities:

V (x) =
∑

i

fi(x) −
∑

ı̄

fı̄(x) , (171)

Σ(x) =
∑

i

fi(x) +
∑

ı̄

fı̄(x) , (172)

where the index ı̄ refers to the antiquark flavours. The evolution equations then become:

dV (n)

dt
=

αs

2π
P (n)

qq V (n) , (173)

dΣ(n)

dt
=

αs

2π

[
P (n)

qq Σ(n) + 2nf P (n)
qg f (n)

g

]
, (174)

df (n)
g

dt
=

αs

2π

[
P (n)

gq Σ(n) + P (n)
gg f (n)

g

]
. (175)

Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
∫ 1
0 dxV (x), counts the number of valence quarks. We there-

fore expect it to be independent of Q2:

dV (1)

dt
≡ 0 =

αs

2π
P (1)

qq V (1) = 0 . (176)
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DGLAP equation for PDFs: 
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of Q2.
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The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
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The n-th term in this expansion, proportional to (αs t)n, corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:
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In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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affect the evolution of the gluon density fg(x):
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with
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Defining the moments of an arbitrary function g(x) as follows:

gn =
∫ 1

0

dx
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xn g(x) ,

it is easy to prove that the evolution equations turn into ordinary linear differential equations:
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5.3. Properties of the evolution equations

We now study some general properties of these equations. It is convenient to introduce the concepts of
valence (V (x, t)) and singlet (Σ(x, t)) densities:
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where the index ı̄ refers to the antiquark flavours. The evolution equations then become:
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Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
∫ 1
0 dxV (x), counts the number of valence quarks. We there-

fore expect it to be independent of Q2:

dV (1)

dt
≡ 0 =

αs

2π
P (1)

qq V (1) = 0 . (176)
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Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
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0 dxV (x), counts the number of valence quarks. We there-
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Parton Distribution Functions (PDFs), 
and consequently the predictions for 
hadroproduction cross sections, 
depend on the factorisation scale  
via the DGLAP equations.  

μF
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reduction of  dependenceμF
The partial cancellation that we have observed for  via the 
renormalisation takes place also in the case of  via PDFs. 
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The scale µ plays here a similar role to the renormalization scale introduced in the second lecture. Its
choice is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the
following “renormalization-group invariance” condition:
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This equation is usually called the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. As in
the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation – which is the result of RG-invariance – resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2

µ2 . We can then expand f(x, t) in powers of t:
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The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
entiating it:
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The n-th term in this expansion, proportional to (αs t)n, corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:
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In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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Defining the moments of an arbitrary function g(x) as follows:
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Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
∫ 1
0 dxV (x), counts the number of valence quarks. We there-

fore expect it to be independent of Q2:
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The scale µ plays here a similar role to the renormalization scale introduced in the second lecture. Its
choice is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the
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This equation is usually called the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. As in
the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation – which is the result of RG-invariance – resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2
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The n-th term in this expansion, proportional to (αs t)n, corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:
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In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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• The subtraction term C should be chosen such that:
• It exactly matches the singular behaviour of R
• It can be integrated numerically in a convenient way
• It can be integrated exactly in d dimension, leading to the soft 
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reduction of  dependenceμF
The partial cancellation that we have observed for  via the 
renormalisation takes place also in the case of  via PDFs. 

μR
μF

in terms of the parton density f measured at a large, perturbative scale µ2:

f(x, µ2) = f(x) + log
(

µ2

µ2
0

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (160)

We can then perform a subtraction, and write:

f(x,Q2) = f(x, µ2) + log
(

Q2

µ2

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (161)

The scale µ plays here a similar role to the renormalization scale introduced in the second lecture. Its
choice is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the
following “renormalization-group invariance” condition:
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This equation is usually called the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. As in
the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation – which is the result of RG-invariance – resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2
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The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
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The n-th term in this expansion, proportional to (αs t)n, corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:

dfq(x, t)
dt

=
αs

2π

∫ 1

x

dz

z

[
Pqq(z) fi(

x

z
, t) + Pqg(z)fg(

x

z
, t)
]
, with Pqg =

1
2

[
z2 + (1 − z)2

]
. (166)

In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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with
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Defining the moments of an arbitrary function g(x) as follows:
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∫ 1
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it is easy to prove that the evolution equations turn into ordinary linear differential equations:
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5.3. Properties of the evolution equations

We now study some general properties of these equations. It is convenient to introduce the concepts of
valence (V (x, t)) and singlet (Σ(x, t)) densities:
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where the index ı̄ refers to the antiquark flavours. The evolution equations then become:
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Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
∫ 1
0 dxV (x), counts the number of valence quarks. We there-

fore expect it to be independent of Q2:

dV (1)

dt
≡ 0 =

αs

2π
P (1)

qq V (1) = 0 . (176)
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in terms of the parton density f measured at a large, perturbative scale µ2:

f(x, µ2) = f(x) + log
(

µ2

µ2
0

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (160)

We can then perform a subtraction, and write:

f(x,Q2) = f(x, µ2) + log
(

Q2

µ2

)
αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
. (161)

The scale µ plays here a similar role to the renormalization scale introduced in the second lecture. Its
choice is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the
following “renormalization-group invariance” condition:

df(x,Q2)
d ln µ2

= µ2 df(x, µ2)
dµ2

− αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)
≡ 0 (162)

and then
µ2 df(x, µ2)

dµ2
=

αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z
, µ2

)
. (163)

This equation is usually called the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. As in
the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation – which is the result of RG-invariance – resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2

µ2 . We can then expand f(x, t) in powers of t:

f(x, t) = f(x, 0) + t
df

dt
(x, 0) +

t2

2!
d2f

dt2
(x, 0) + . . . (164)

The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
entiating it:

f ′′(x, t) =
αs

2π

∫
dz

z
Pqq(z)

df

dt
(
x

z
, t) ,

=
αs

2π

∫ 1

x

dz

z
Pqq(z)

αs

2π

∫ 1

x
z

dz′

z′
Pqq(z)f(

x

zz′
, t) ,

...

f (h)(x, t) =
αs

2π

∫ 1

x
. . . . . .

αs

2π

∫ 1

x/zz′...z(n−1)

dz(n)

z(n)
Pqq(z(n))f(

x

zz′ . . .
, t) . (165)

The n-th term in this expansion, proportional to (αs t)n, corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:

dfq(x, t)
dt

=
αs

2π

∫ 1

x

dz

z

[
Pqq(z) fi(

x

z
, t) + Pqg(z)fg(

x

z
, t)
]
, with Pqg =

1
2

[
z2 + (1 − z)2

]
. (166)

In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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Diagrams made by MadGraph5_aMC@NLO
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PDF evolution: 

Singularities structure: 

no IR div.

Depending on the kinematical condition: 
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 for  

|ℳqig→tt̄qf
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2 Pqg qf ∥ g
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|2 ∼ |ℳgg→tt̄ |
2 Pgq qf ∥ qi

ℳqg→t̄tqTogether with  poles, collinear divergencies exhibit 
 terms factorising . 

They need to be subtracted at the scale , and their 
 dependence cancel exactly the  dependence on 
 from PDF evolution.
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μF

57



 and  dependence form LO to NLO (revisited)μF μR

 contains terms that cancel the leading dependence of  on  
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PDF evolution of the PDFs associated to  at Born. 
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Figure 19. NLO and LO cross sections for tt̄tt̄ production at 13 TeV. Comparison of the scale
dependence in the interval µc

/8 < µ < 8µ
c for the four different choices of the central value µ

c: µg,
µa, µLO

a , 2mt.

2.3 tt̄tt̄ production

In this section we present results for tt̄tt̄ production. We start by showing in fig. 19 the
scale dependence of the LO (blue lines) and NLO (red lines) total cross section at 13 TeV.
As for the previous cases, we vary µ = µr = µf by a factor eight around the central value
µ = µg (solid lines), µ = µa (dashes lines) and, due to the much heavier final state, µ = 2mt

(dotted lines). In this case we also show with a dot-dashed line the dependence of the NLO
cross section on an alternative definition of average scale µ

LO
a =

1

N

P
i=1,N

mT,i, where
possible additional partons appearing in the final state do not contribute.

As expected, predictions relative to µg and µ
LO
a are very close. Conversely, µa and

µ
LO
a show a non-negligible difference. Note that the value of µa and µ

LO
a is the same for

Born and and virtual contributions for any kinematic configuration. Thus, the difference
between dashed and dot-dashed lines is formally an NNLO effect that arise from differences
in the scale renormalisation for real radiation events only. To investigate the origin of this
effect, we have explicitly checked that the difference is mainly induced by the corresponding
change in the renormalisation scale and not of the factorisation scale. Similar behaviour is
also found in tt̄V and tt̄V V processes, yet since the masses of the final-state particles are
different and the ↵s coupling order lower, µg and µ

LO
a lines are more distant than in tt̄tt̄

production.
Since the LO cross section is of O(↵

4
s), it strongly depends on the value of the renor-

malisation scale, as can be seen in fig. 19. This dependence is considerably reduced at NLO
QCD accuracy in the standard interval µg/2 < µ < 2µg. Conversely, for µ < µg/4 the value
of the cross section falls down rapidly, reaching zero for µ ⇠ µg/8. This is a signal that
in this region the dependence of the cross section on µ is not under control. Qualitatively
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Maltoni, DP, Tsinikos ‘15

For instance:  ~  at LO. 

By varying  by a factor of 2 up/down, 
the scale uncertainty moves from:  
-40%/+80% at LO to 
-25%/+25% at NLO!  

pp → tt̄tt̄ α4
s

μR = μF
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Automation 
 at NLO QCD: 

how to put things together 
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MadLoop

 MC@NLONinja, Collier
CutTools, …

FKS 

FKS MadGraph
aMC@NLO

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro  ’14 
Frederix, Frixione, Hirschi, DP, Shao, Zaro  ‘18

The structure of MadGraph resembles the steps of a calculation that 
in principle one could do with pencil and paper: 

Generation of loop 
diagrams and UV 

counterterms 

Evaluation of the 
loop diagrams 

Regularisation of IR 
divergencies in loop 
and real diagrams. 

NOT relevant for 
fixed order 
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�NLO =

Z
d4�nB +

Z
d4�nV +

Z
d4�n+1R

Phase space integration

• For complicated processes the integrations have to be done via 
MonteCarlo techniques, in an integer number of dimensions

• Divergences have to be canceled explicitly
• Slicing/Subtraction methods have been developed to extract 

divergences from the phase-space integrals

21

contains ∫ ddl

Again slides stolen from Marco Zaro, who 
gave this lecture at the 2022 edition of this 
school. More details can be found on this 
particular subject in his slides
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Example

• Suppose that we can cast the phase space integral in the form

• We introduce a regulator which renders the integral finite

• The divergence will turn into a pole in ε. How can we extract 
the pole?

22

Z 1

0
dxf(x) f(x) =

g(x)

x
g(x)with and a regular function

Z 1

0
dxx"f(x) =

Z 1

0
dx

g(x)

x1�"
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Phase space slicing

• We introduce a small parameter δ≪1:
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Subtraction method

• Add and subtract g(0)/x
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• In both cases the pole is extracted and we end up with a finite 
remainder:

• Subtraction acts like a plus distribution
• Slicing works only for small δ: δ-independence of cross section 

and distributions must be proven; subtraction is exact
• Both methods have cancelations between large numbers. If for a 

given observable                     or we choose a too small bin 
size, instabilities will arise (we cannot ask for an infinite 
resolution)

• Subtraction is in general more flexible: good for automation

Slicing vs Subtraction
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�NLO =

Z
d4�nB

+

Z
d4�n

✓
V +

Z
dd�1C

◆

"!0

+

Z
d4�n+1 (R� C)

�NLO =

Z
d4�nB +

Z
d4�nV +

Z
d4�n+1R

NLO with subtraction

• With the subtraction terms the expression becomes

• Terms in brackets are finite and can be integrated 
numerically in d=4 and independently one from another

26

Poles cancel from  
d-dim integration

Integrand is finite in 
4 dimension
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The subtraction term

• The subtraction term C should be chosen such that:
• It exactly matches the singular behaviour of R
• It can be integrated numerically in a convenient way
• It can be integrated exactly in d dimension, leading to the soft 

and/or collinear poles in the dimensional regulator
• It is process independent (overall factor times Born)

• QCD comes to help: structure of divergences is universal:
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• Collinear singularity:

• Soft singularity:
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 at NLO QCD: 
some results you can 
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Some results for  processestt̄V
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13 TeV �[fb] tt̄H tt̄Z tt̄W
±

tt̄�

NLO 522.2
+6.0%
�9.4%

+2.1%
�2.6% 873.6

+10.3%
�11.7%

+2.0%
�2.5% 644.8

+13.0%
�11.6%

+1.7%
�1.3% 2746

+14.2%
�13.5%

+1.6%
�1.9%

LO 476.6
+35.5%
�24.2%

+2.0%
�2.1% 710.3

+36.1%
�24.5%

+2.0%
�2.1% 526.9

+28.1%
�20.4%

+1.7%
�1.8% 2100

+36.2%
�24.5%

+1.8%
�1.9%

K-factor 1.10 1.23 1.22 1.31

Table 1. NLO and LO cross sections for tt̄V processes and tt̄H production at 13 TeV for µ = µg.
As already stated in the text, with tt̄W

± we refer to the sum of the tt̄W
+ and tt̄W

� contributions.
The first uncertainty is given by the scale variation within µg/2 < µf , µr < 2µg, the second one by
PDFs. The relative statistical integration error is equal or smaller than one permille.

Using the procedure described before, in table 1 we list, for all the processes, LO
and NLO cross sections together with PDF and scale uncertainties, and K-factors for the
central values. The dependence of the LO and NLO cross sections on µ = µr = µf is also
shown in fig. 2 in the range µg/8 < µ < 8µg. As expected, for all the processes, the scale
dependence is strongly reduced from LO to NLO predictions both in the standard interval
µg/2 < µ < 2µg as well as in the full range µg/8 < µ < 8µg. For tt̄� process (upper
plots in figs. 1 and 2), we find that in general the dependence of the cross-section scale
variation is not strongly affected by the minimum pT of the photon, giving similar results
for pT (�) > 20GeV and pT (�) > 50GeV. As already stated in section 1, with tt̄W

± we
refer to the sum of the tt̄W

+ and tt̄W
� contributions.

We now show the impact of NLO QCD corrections on important distributions and we
discuss their dependence on the scale variation as well as on the definition of the scales. For
all the processes we analysed the distribution of the invariant mass of the top-quark pair
and the pT and the rapidity of the (anti)top quark, of the top-quark pair and of the vector or
scalar boson. Given the large amount of distributions, we show only representative results.
All the distributions considered and additional ones can be produced via the public code
MadGraph5_aMC@NLO.

For each figure, we display together the same type of distributions for the four different
processes: tt̄�, tt̄H, tt̄W± and tt̄Z. Most of the plots for each individual process will be
displayed in the format described in the following.

In each plot, the main panel shows the specific distribution at LO (blue) and NLO
QCD (red) accuracy, with µ = µf = µr equal to the reference scale µg. In the first inset
we display scale and PDF uncertainties normalised to the blue curve, i.e., the LO with
µ = µg. The mouse-grey band indicates the scale variation at LO in the standard range
µg/2 < µf , µr < 2µg, while the dark-grey band shows the PDF uncertainty. The black
dashed line is the central value of the grey band, thus it is by definition equal to one. The
solid black line is the NLO QCD differential K-factor at the scale µ = µg, the red band
around it indicates the scale variation in the standard range µg/2 < µf , µr < 2µg. The
additional blue borders show the PDF uncertainty. We stress that in the plots, as well as
in the tables, scale uncertainties are always obtained by the independent variation of the
factorisation and renormalisation scales, via the reweighting technique introduced in [48].
The second and third insets show the same content of the first inset, but with different
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Figure 3. Differential distributions for the invariant mass of top-quark pair, m(tt̄). The format of
the plots is described in detail in the text.

quark pair (m(tt̄)) for the four production processes. From this distribution it is possible
to note some features that are in general true for most of the distributions. As can be
seen in the fourth insets, the use of µ = µa leads to NLO values compatible with, but
systematically smaller than, those obtained with µ = µg. Conversely, the using µ = mt leads
to scale uncertainties bands that overlap with those obtained with µ = µg. By comparing
the first three insets for the different processes, it can be noted that the reduction of the
scale dependence from LO to NLO results is stronger in tt̄H production than for the tt̄V
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