NLO QCD and EW corrections (What are? How to compute them with MG5?)

Istituto Nazionale di Fisica Nucleare SEZIONE DI BOLOGNA

Davide Pagani

Iwate Collider School (ICS2023) Hachimantai (Japan) 03-2023

OUTLINE

Why NLO and higher-order corrections are important?

General aspects of NLO, focusing on NLO QCD

NLO EW (EW renormalisation)

If time is enough: Complete-NLO, Sudakov

Motivations:

Why calculating NLO and higher-order corrections?

SM at the LHC (all good, too good)

Standard Model Production Cross Section Measurements Status: February 2022 σ [pb] **∆O** total (×2) **ATLAS** Preliminary 10^{11} inelastic Theory inc 00 GeV $\sqrt{s} = 5,7,8,13$ TeV 10^{6} 70 GeV LHC pp $\sqrt{s} = 13$ TeV **A**0 О. Data 3.2 - 139 fb⁻¹ $p_{\rm T} > 75 \, {\rm GeV}$ dijets $E_T^{\gamma} > 25 \text{ GeV}$ $\rho_T > 100 \text{ GeV}$ 10⁵ LHC pp $\sqrt{s} = 8$ TeV 10^{4} Data 20.2 - 20.3 fb⁻¹ $p_{\rm T} >$ LHC pp $\sqrt{s} = 7$ TeV 30 GeV 10³ $n_j \ge 1$ E_{\pm}^{γ} Ð Data 4.5 – 4.9 fb⁻¹ 0 $n_j \ge 2$ 30 Ge\ 10² Δ **4**0 o $n_i \geq 1$ $n_j \ge 1$ 0 LHC pp $\sqrt{s} = 5$ TeV o total $n_i \geq 3$ $100 \text{ GeV}_{n_j \ge 2}$ Δ <mark>4</mark>0 $n_i \ge 2$ 0 Data $0.03 - 0.3 \, \text{fb}^{-1}$ ∇ О. 10^{1} п $p_{\rm T} > 25 \, {\rm GeV}$ $n_i \ge 4$ О. $n_j \ge 4$ **4**0 $n_i \ge 3$ Wy 4 0 0 $H \rightarrow WW$ $n_j \ge 5$ s-chan $n_i \ge 5$ (ggF) 40 WWW tot 1 $n_j \ge 6$ 0 $n_i \ge 6$ Δ Wjj $n_i \ge 7$ WWZ tot $H \rightarrow \tau \tau$ $H \rightarrow WW$ $(\times 0.5)$ $n_j \ge 5$ tīW± 👗 (×0.2) (×0.25) Δo 0 0 10^{-1} \square_{tZi} $n_j \ge 8$ 0 п. = 4 $n_j \ge 6$ 0 D 0 Ξ. $H \rightarrow \gamma \gamma$ $H \rightarrow \tau \tau$ Zjj 10^{-2} $n_i \ge 7$ (×0.15) tota Δ = 5 0 $n_j \ge 7$ W^{\pm} $H \rightarrow \gamma \gamma$ 0 О Δ (×0.5) Δ ZΖ 10^{-3} ю. ; ≥ 6 $H \rightarrow 4\ell$ п $H \rightarrow \gamma \gamma$ D WW.

 $\gamma\gamma\gamma V_{\gamma\gamma}^{Z\gamma jj}$ VVjj WWV Hjj **VH** Vγ tīV tīH pp Jets γ W Ζ tŦ t VV γγ Н ttγ Vjj tītī $\gamma \gamma \rightarrow WW$ VBF EWK tot. tot. tot. tot. EWK

Differential distributions: let's look at the tails

With higher luminosity (and higher energy), at the LHC the accuracy of all measurements will in general increase, especially in the tail of distributions.

Differential distributions: let's look at the tails

With higher luminosity (and higher energy), at the LHC the accuracy of all measurements will in general increase, especially in the tail of distributions.

Precise predictions are necessary for the current and future measurements at the LHC. In order to match the experimental precision NLO QCD, NLO EW and even higher-order corrections are paramount.

Predictions at the LHC

- PDFs are fitted from experimental measurements, only the dependence on μ can be calculated in perturbation theory via DGLAP equations.
- Partonic cross sections can be calculated in perturbation theory via Feynman diagrams.

Predictions at the LHC

- PDFs are fitted from experimental measurements, only the dependence on μ can be calculated in perturbation theory via DGLAP equations.
- Partonic cross sections can be calculated in perturbation theory via Feynman diagrams.

Precise predictions at the LHC: for what?

- More precise predictions for the total cross sections. (Total normalization)
- More precise differential distributions. (Kinematic-dependent corrections)
- Reduction of μ dependence. (Theoretical accuracy)

Methods/ Approximations

Fixed orders, Resummation, RGE, Parton Shower, Matching, Merging $\frac{1}{2} \cos \theta = \frac{1}{2} \cos \theta =$

endrarierance de l'élégende de la company Calendaries SIM, leonuminai agora sono chao estructura de la company de la company de la company de la company d

to the powers of a stand of the manual providence of contractions and revice of a stand with a place of the stand of the s

North Born LO

 $\mathcal{O}(\alpha) \text{ corrections}$

Figure initial state we find NNLO QCD α_s^2) corrections

> NNLO EW, NNNLO QCD

At the LHC, QCD is everywhere. Nowadays, a "standard" prediction in the SM is at NLO QCD accuracy.

NNLO QCD is expected to be of the same order of NLO EW $\alpha_s^2 \sim \alpha$.

Correct interpretation of the (B)SM signal

A recent story from an other hadron collider: the top-quark forward-backward asymmetry at the Tevatron. $pp \rightarrow tt + X$

Correct interpretation of the (B)SM signal

A recent story from an other hadron collider: **the top-quark forward-backward asymmetry at the Tevatron.**

Surprisingly (No Sudakov enhancement), the NLO EW induces corrections of order 20-25%.

NNLO QCD and NLO EW are essential for a reliable theoretical prediction.

Missing higher-orders in the theoretical predictions may be misinterpreted as BSM signals.

Czakon, Fiedler, Mitov '14

Importance of NLO and NNLO QCD corrections

be careful : just illustrative example, not very precise

NLO Corrections

How do I calculate them?

you can do it with MadGraph but you need to know what's going on in order to understand the results

This is how an event at the LHC looks like:

We are going to discuss how to calculate with higher precision the central part of this picture: THE HARD SCATTERING PROCESS

The hard scattering process

Actually we will mostly focus on how to improve the evaluation of the parton-level cross section, but also PDFs are equivalently important.

The structure of MadGraph resembles the steps of a calculation that in principle one could do with pencil and paper:

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro '14 Frederix, Frixione, Hirschi, DP, Shao, Zaro '18 The structure of MadGraph resembles the steps of a calculation that in principle one could do with pencil and paper:

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro '14 Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

QCD corrections (let's forget about EW until further notice)

Let's start with a concrete example: $pp \rightarrow t\bar{t}$

The LO cross section originates from the simplest diagrams you can imagine for all the possible partonic processes stemming from the partons in the proton: $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$.

$pp \rightarrow t\bar{t}$ at LO

Easy calculation that can be done also with pencil and paper, for example for the $q\bar{q}$ initial state (gg case is similar):

$$\begin{split} \frac{d\sigma}{d\Omega}(q\bar{q}\rightarrow Q\bar{Q}) = & \boxed{\frac{\alpha_s^2}{9s^3}}\sqrt{1-\frac{4m_Q^2}{s}} \\ & \left[(m_Q^2-t)^2+(m_Q^2-u)^2+2m_Q^2s\right], \end{split}$$

Notice that the cross sections is proportional to α_s^2 , as the squared of the amplitudes I have shown before.

Remember that α_s is not a constant and it runs, so your cross section will depend on which scale you will choose for it.

$pp \rightarrow t\bar{t}$ at NLO QCD

For a given final state if LO ~ α_s^n , NLO QCD corrections are all the contributions proportional to the *inclusive* production of the same final state at the order α_s^{n+1} .

In the case of $pp \to t\bar{t}$ this means: $pp \to t\bar{t}(+X)$ of order α_s^3 .

In MG5 this is equivalent to ask

```
generate p p > t t~ [QCD]
output ttbarNL0_folder
```

and you can then calculate the cross section:

But let's see some diagrams that emerge at this order.

$pp \rightarrow t\bar{t}$ at NLO QCD

LO
$$\mathcal{O}(\alpha_s^2)$$
 $\mathcal{O}(\alpha_s^2)$ $q\bar{q} \rightarrow t\bar{t} : |\mathcal{M}_{tree}|^2$
 $gg \rightarrow t\bar{t} : |\mathcal{M}_{tree}|^2$

NLO $\mathcal{O}(\alpha_s^3)$

 $LO \quad \mathcal{O}(\alpha_s^2) \quad \square \quad q\bar{q} \to t\bar{t} : |\mathcal{M}_{\text{tree}}|^2 \qquad \underset{\mathcal{O}(\alpha_s^2) \text{ or } \mathcal{O}(\alpha_s^3) \text{ of}}{\mathbb{S}g \to t\bar{t} : |\mathcal{M}_{\text{tree}}|^2} \qquad \underset{\mathcal{M}_{i-\text{loop}}}{\overset{\mathcal{O}(\alpha_s^2) \text{ or } \mathcal{O}(\alpha_s^3) \text{ of}}}$ $q\bar{q} \rightarrow t\bar{t} : 2\Re(\mathscr{M}_{\text{tree}}\mathscr{M}^*_{1-\text{loop}})$ $gg \rightarrow t\bar{t} : 2\Re(\mathscr{M}_{\text{tree}}\mathscr{M}^*_{1-\text{loop}})$ $q\bar{q} \rightarrow t\bar{t}g : |\mathcal{M}_{tree}|^{2}$ $gg \rightarrow t\bar{t}g : |\mathcal{M}_{tree}|^{2}$ $qg \rightarrow t\bar{t}q : |\mathcal{M}_{tree}|^{2}$ $\bar{q}g \rightarrow t\bar{t}\bar{q} : |\mathcal{M}_{tree}|^{2}$ IReal emission

LO $\mathcal{O}(\alpha_s^2)$

$$\begin{array}{cccc} q\bar{q} \rightarrow t\bar{t} : & \left| \mathcal{M}_{\text{tree}} \right|^2 \\ gg \rightarrow t\bar{t} : & \left| \mathcal{M}_{\text{tree}} \right|^2 \\ \end{array} \begin{array}{c} \text{Expansion at order} \\ \mathcal{O}(\alpha_s^2) \text{ or } \mathcal{O}(\alpha_s^3) \text{ of} \\ \\ \left| \mathcal{M} \right|^2 = \left| \sum_{i=0}^{\infty} \mathcal{M}_{i-\text{loop}} \right|^2 \end{array}$$

UV and IR divergent!

NLO $\mathcal{O}(\alpha_s^3)$ UV and IR finite

UV (ultraviolet) divergencies are canceled via renormalisation.

IR (infrared) divergencies are canceled via combination of virtual+real (KLN) and subtraction to the PDFs.

$$q\bar{q} \rightarrow t\bar{t} : 2\Re(\mathscr{M}_{\text{tree}}\mathscr{M}_{1-\text{loop}}^{*})$$

$$gg \rightarrow t\bar{t} : 2\Re(\mathscr{M}_{\text{tree}}\mathscr{M}_{1-\text{loop}}^{*})$$

$$q\bar{q} \rightarrow t\bar{t}g : |\mathscr{M}_{\text{tree}}|^{2}$$

$$gg \rightarrow t\bar{t}g : |\mathscr{M}_{\text{tree}}|^{2}$$

$$qg \rightarrow t\bar{t}q : |\mathscr{M}_{\text{tree}}|^{2}$$

$$gg \rightarrow t\bar{t}q : |\mathscr{M}_{\text{tree}}|^{2}$$

$$Real emission$$

$$Real emission$$

$$Real emission$$

$$Real emission$$

LO $\mathcal{O}(\alpha_s^2)$

$$q\bar{q} \rightarrow t\bar{t}: |\mathcal{M}_{\text{tree}}|^2 \qquad \text{Expansion at order} \\ \mathcal{B}g \rightarrow t\bar{t}: |\mathcal{M}_{\text{tree}}|^2 \qquad \mathcal{M}_{\text{i-loop}}|^2 \qquad \text{Expansion at order} \\ \mathcal{B}(\alpha_s^2) \text{ or } \mathcal{O}(\alpha_s^3) \text{ of} \qquad \mathcal{M}_{\text{i-loop}}|^2 \\ \mathcal{M}|^2 = \left|\sum_{i=0}^{\infty} \mathcal{M}_{\text{i-loop}}\right|^2 \end{cases}$$

UV and IR divergent!

NLO $\mathcal{O}(\alpha_s^3)$ UV and IR finite

UV (ultraviolet) divergencies are canceled via renormalisation.

IR (infrared) divergencies are canceled via combination of virtual+real (KLN) and subtraction to the PDFs.

$$\begin{array}{c} q\bar{q} \rightarrow t\bar{t} : 2\Re(\mathscr{M}_{\text{tree}}\mathscr{M}_{1-\text{loop}}^{*}) \\ gg \rightarrow t\bar{t} : 2\Re(\mathscr{M}_{\text{tree}}\mathscr{M}_{1-\text{loop}}^{*}) \\ q\bar{q} \rightarrow t\bar{t}g : |\mathscr{M}_{\text{tree}}|^{2} \\ gg \rightarrow t\bar{t}g : |\mathscr{M}_{\text{tree}}|^{2} \\ qg \rightarrow t\bar{t}q : |\mathscr{M}_{\text{tree}}|^{2} \\ \bar{q}g \rightarrow t\bar{t}\bar{q} : |\mathscr{M}_{\text{tree}}|^{2} \end{array} \right\} \begin{array}{c} \text{Free sets of the set$$

NOTE THAT WITHIN $t\bar{t}$ AT NLO WE HAVE ALSO $t\bar{t} + 1$ jet AT LO!

Loop Diagrams

Before looking at renormalisation, let's see how loop diagrams are computed in MadGraph.

While for a process like $pp \rightarrow t\bar{t}$ one may even use textbook methods, this approach would not in general work for complex processes and especially for the automation.

These are just 9 of the 2478 diagrams entering the 1-loop amplitude for $gg \rightarrow t\bar{t}t\bar{t}$.

Try just to calculate one by hand (notice that there are 6 propagators!) and you can realise the challenge ..

Next slides are stolen from Marco Zaro, who gave this lecture at the 2022 edition of this school.

Loops how to calculate them

NLO (pre)history

- NLO evolution:
 - e.g. $pp \rightarrow W+n$ jets

Computing loops numerically

• Consider a *m*-point one-loop diagram with *n* external momenta

A hint...

• Any one-loop integral can be cast in the form

$$\int d^d l \frac{N(l)}{D_0 D_1 \dots D_{m-1}} = \sum \operatorname{coeff}_i \int d^d l \frac{1}{D_{i_0} D_{i_1} \dots}$$

- It is a linear combination of scalar integrals
- If d=4+ε, only scalar integrals with up to 4
 denominators are needed → the basis is finite!
- The coefficients depend only on external momenta and parameters

Scalar integrals

• Scalar integrals are known and available as libraries

FF (van Oldenborgh, CPC 66,1991) QCDLoop (Ellis, Zanderighi, arXiv:0712.1851) OneLOop (Van Hameren, arXiv:1007.4716)

$$\mathcal{M}^{1\text{loop}} = \sum_{i_0, i_1, i_2, i_3} d_{i_0 i_1 i_2 i_3} \mathcal{D}_{i_0 i_1 i_2 i_3}$$
$$+ \sum_{i_0, i_1, i_2} c_{i_0 i_1 i_2} \mathcal{C}_{i_0 i_1 i_2}$$
$$+ \sum_{i_0, i_1} b_{i_0 i_1} \mathcal{B}_{i_0 i_1}$$
$$+ \sum_{i_0} a_{i_0} \mathcal{A}_{i_0}$$

Box
$$\mathcal{D}_{i_0 i_1 i_2 i_3} = \int d^d l \frac{1}{D_{i_0} D_{i_1} D_{i_2} D_{i_3}}$$

Triangle $\mathcal{C}_{i_0 i_1 i_2} = \int d^d l \frac{1}{D_{i_0} D_{i_1} D_{i_2}}$
Bubble $\mathcal{B}_{i_0 i_1} = \int d^d l \frac{1}{D_{i_0} D_{i_1}}$
Tadpole $\mathcal{A}_{i_0} = \int d^d l \frac{1}{D_{i_0}}$

How to compute the coefficients?

- Several techniques exist
 - Computation of loop MEs
 - Tensor reduction
 - Generalized unitarity
 - Integrand reduction

Passarino, Veltman, 1979 Denner, Dittmaier, hep-ph/509141 Binoth, Guillet, Heinrich, Pilon, Reiter, arXiv:0810.0992

Bern, Dixon, Dunbar, Kosower, hep-ph/9403226 + ... Ellis, Giele, Kunszt, arXiv:0708.2398 + Melnikov, arXiv:0806.3467

Ossola, Papadopoulos, Pittau, hep-ph/0609007 Del Aguila, Pittau, hep-ph/0404120 Mastrolia, Ossola, Reiter, Tramontano, arXiv:1006.0710

Integrand reduction

• Can we take away the integral?

$$\int d^d l \frac{N(l)}{D_0 D_1 \dots D_{m-1}} = \sum \operatorname{coeff}_i \int d^d l \frac{1}{D_{i_0} D_{i_1} \dots}$$

 Of course not, we must take into account for terms which integrate to 0, the so-called spurious terms:

$$\frac{N(l)}{D_0 D_1 \dots D_{m-1}} \neq \sum \operatorname{coeff}_i \frac{1}{D_{i_0} D_{i_1} \dots}$$

$$\frac{N(l)}{D_0 D_1 \dots D_{m-1}} = \sum \left(\operatorname{coeff}_i + \operatorname{spurious}_i(l) \right) \frac{1}{D_{i_0} D_{i_1} \dots}$$

Spurious terms

- The functional form of the spurious terms is known and depends on the rank (powers of I in the numerator) and on the number of denominators Del Aguila, Pittau, hep-ph/0404120
 - E.g. a rank-1 box

$$\tilde{d}_{i_0 i_1 i_2 i_3}(l) = \tilde{d}_{i_0 i_1 i_2 i_3} \epsilon^{\mu\nu\rho\sigma} l^{\mu} p_1^{\nu} p_2^{\rho} p_3^{\sigma}$$

• The integral is 0

$$\int d^d l \frac{\tilde{d}_{i_0 i_1 i_2 i_3}(l)}{D_0 D_1 D_2 D_3} = \tilde{d}_{i_0 i_1 i_2 i_3} \int d^d l \frac{\epsilon^{\mu\nu\rho\sigma} l^\mu p_1^\nu p_2^\rho p_3^\sigma}{D_0 D_1 D_2 D_3} = 0$$

OPP decomposition

Ossola, Papadopoulos, Pittau, hep-ph/0609007

$$\frac{N(l)}{D_0 D_1 \dots D_{m-1}} = \sum \left(\operatorname{coeff}_i + \operatorname{spurious}_i(l) \right) \frac{1}{D_{i_0} D_{i_1} \dots}$$

• If we multiply both sides times $D_0D_1...D_{m-1}$ we get

$$N(l) = \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} D_i$$

+ $\sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} D_i$
+ $\sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} D_i$
+ $\sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} D_i$
+ $\tilde{P}(l) \prod_i D_i + \mathcal{O}(\varepsilon)$

Getting the coefficients

- N(l) is known from the diagrams and the functional form of spurious terms is known too
 - We can sample N(l) at various values of the loop momentum, and get a system of linear equations
 - The sampling can be done numerically
 - By choosing smart values of *l* (in the complex plane), the system can be greatly simplified
 - E.g. we can choose I such that

$$D_1(l^{\pm}) = D_2(l^{\pm}) = D_3(l^{\pm}) = D_4(l^{\pm}) = 0$$
$$N(l^{\pm}) = (d_{1234} + \tilde{d}_{1234}(l^{\pm})) \prod_{i \neq 1, 2, 3, 4} D_i(l^{\pm})$$

Marco Zaro, 23-24/03/2022

Getting the coefficient: recap

- For each PS point, we have to solve a system of equations numerically
- The system reduces when special values of the loop momentum are chosen
- N(l) can be the numerator of the full matrix element, of a single diagram or anything in between
- For a given PS point, the numerator has to be sampled several times (~50 for a 4-point diagrams)

The evil is in the details: Complications in d dimensions

- So far, we did not care much about the number of dimensions we were using
- In general, external momenta and polarisations are in 4 dimensions; only the loop momentum is in d
- To be more rigorous, we compute the integral

Implications

• The reduction should be consistently done in *d* dimensions

 $\mathcal{M}^{1\text{loop}} = \sum_{i_0, i_1, i_2, i_3} d_{i_0 i_1 i_2 i_3} \bar{\mathcal{D}}_{i_0 i_1 i_2 i_3}$ $+ \sum_{i_0, i_1, i_2} c_{i_0 i_1 i_2} \bar{\mathcal{C}}_{i_0 i_1 i_2}$ $+ \sum_{i_0, i_1} b_{i_0 i_1} \bar{\mathcal{B}}_{i_0 i_1}$ $+ \sum_{i_0} a_{i_0} \bar{\mathcal{A}}_{i_0}$ $+ \mathcal{O}(\varepsilon)$

Implications

• The reduction should be consistently done in *d* dimensions

That is why the rational terms are needed

Marco Zaro, 23-24/03/2022

The rational terms

OPP, arXiv:0802.1876

- In the OPP method, two types of rational terms are there: $R=R_1+R_2$
- Both originate from the UV part of the model, but only R_1 can be computed in the OPP decomposition
- R_1 originates from the *denominators* (propagators) in the loops

$$\frac{1}{\bar{D}_i} = \frac{1}{D_i} \left(1 - \frac{\tilde{l}^2}{D_i} \right)$$

- The denominator structure is known, so these terms can be directly included in the OPP reduction
- R_1 contributions are proportional to

$$\int d^{d}l \frac{\tilde{l}^{2}}{\bar{D}_{i}\bar{D}_{j}} = -\frac{i\pi^{2}}{2} \left[m_{i}^{2} + m_{j}^{2} - \frac{(p_{i} - p_{j})^{2}}{2} \right] + \mathcal{O}(\varepsilon)$$

$$\int d^d l \frac{l^2}{\bar{D}_i \bar{D}_j \bar{D}_k} = -\frac{i\pi^2}{2} + \mathcal{O}(\varepsilon)$$
$$\int d^d l \frac{\tilde{l}^2}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} = -\frac{i\pi^2}{6} + \mathcal{O}(\varepsilon)$$

Marco Zaro, 23-24/03/2022

R₂ Feynman rules

- In a renormalizable theory, only up to 4-point integrals contribute to the R_2 terms
- They can be included in the computation using special Feynman rules (as it is done for the UV renormalisation). For example:

• Similarly to the UV counterterms, the R_2 terms are model dependent and need to be explicitly computed for BSM models This is now automated for renormalizable theories

MadLoop

Hirschi et al, arXiv:1103.0621

- How to automate loop computation?
- Exploit MadGraph's capabilities to generate tree-level diagrams
- Loop diagrams with n external legs can be cut, leading to tree diagrams with n+2 legs
- All diagrams with 2 extra particles are generated, those which are needed are filtered out
- Each diagram is assigned a tag, which helps removing mirror/cyclic configurations
- Additional filters to remove tadpole/ bubbles on external legs
- Contract with Born, do the color algebra, re-glue the cut particle, etc...
- Add UV and R2 counterterms as extra vertices

2

Renormalisation a focus on μ_r dependence

Going back to renormalisation:

Once diagrams are calculated, one needs to eliminate UV divergencies. In a renormalisable theory a finite set of renormalisation conditions is sufficient.

We will see in more detail for the EW case, but the idea is the following. For automatising the renormalisation procedure one has to implement a set of new Feynman rules corresponding to UV counterterms, such that UV divergencies are canceled. These terms depend on the renormalisation of physical parameters $(\delta^{UV}\alpha_s, \delta^{UV}m_{\psi})$ and wave-function renormalisation $(\delta^{UV}Z_g, \delta^{UV}Z_{\psi})$.

Now I want to focus to the case of $\delta^{UV} \alpha_s$, which is typically defined in the socalled \overline{MS} scheme. The philosophy behind it is precisely a Minimal Subtraction, i.e., removing the $1/\epsilon$ pole and promote the *regularisation* scale to the *renormalisation* scale.

$$\delta^{\text{UV}}\alpha_s = -\frac{\alpha_s}{4\pi}\beta_0\Delta$$
 with $\Delta = 1/\epsilon - \gamma + \log(4\pi)$ and $\beta_0 = 11 - \frac{2}{3}n_f$

α_s renormalisation

For a tree-level amplitude \mathcal{M}_{tree} factorising a power α_s^n , the UV part related to the renormalisation of α_s in the corresponding one-loop amplitude, $\mathcal{M}_{1-\text{loop}}^{\alpha_s-\text{UV}}$, has a form of the kind:

$$\mathcal{M}_{1-\text{loop}}^{\alpha_s-\text{UV}} = \sim \mathcal{M}_{\text{tree}} \times n \frac{\alpha_s}{4\pi} \beta_0 (\Delta + \log(\mu_R^2/Q^2))$$

together with Δ there is the log of μ_R and another physical scale Q

So then if I look to the renormalised one-loop amplitude $\mathcal{M}_{1-\text{loop}}^{\text{ren}}$ it contains a term of the form

$$\mathcal{M}_{1-\text{loop}}^{\alpha_s-\text{UV}} + \mathcal{M}_{\text{tree}} n\delta^{UV} \alpha_s = \mathcal{M}_{\text{tree}} \times \frac{n \frac{\alpha_s}{4\pi} \beta_0 \log(\mu_R^2/Q^2)}{4\pi}$$

Note that since it is \mathcal{M} and not $|\mathcal{M}|^2$, *n* can be half-integer

But remember that we have assumed \mathcal{M}_{tree} proportional to α_s^n and

$$\left(\alpha_{s}(\mu_{R})\right)^{n} = \left(\frac{\alpha_{s}(\mu_{0})}{1 + \frac{\alpha_{s}}{4\pi}\beta_{0}\log(\mu_{R}^{2}/\mu_{0}^{2})}\right)^{n} \sim \left(\alpha_{s}(\mu_{0})\right)^{n} \times \left(1 - n\frac{\alpha_{s}}{4\pi}\beta_{0}\log(\mu_{R}^{2}/\mu_{0}^{2})\right)$$

Remember we are looking to NLO, so terms of $\mathcal{O}(\alpha_s^{n+2})$ are beyond our accuracy target!

α_s renormalisation

 $\mathcal{M}_{1-\text{loop}}^{\text{ren}}$ contains terms that cancel the leading dependence of $\mathcal{M}_{\text{tree}}$ on μ_R .

NLO QCD corrections $(\sim 2\Re(\mathcal{M}_{\text{tree}}\mathcal{M}_{1-\text{loop}}^*))$ cancel the leading dependence of LO $(\sim |\mathcal{M}_{\text{tree}}|^2)$ on μ_R .

For instance: $pp \rightarrow t\bar{t}t\bar{t} \sim \alpha_s^4$ at LO.

By varying μ_R by a factor of 2 (this is the HEPph dogma) up/down, the scale uncertainty moves from: -40% +80% at LO to -25% +25% at NLO!

α_s renormalisation

 $\mathcal{M}_{1-\text{loop}}^{\text{ren}}$ contains terms that cancel the leading dependence of $\mathcal{M}_{\text{tree}}$ on μ_R .

NLO QCD corrections $(\sim 2\Re(\mathcal{M}_{\text{tree}}\mathcal{M}_{1-\text{loop}}^*))$ cancel the leading dependence of LO $(\sim |\mathcal{M}_{\text{tree}}|^2)$ on μ_R .

Actually, it is a bit more complex. This plot depends also on the factorisation scale, but for discussing this we need to look before at IR divergencies.

Infrared divergencies how to eliminate them

Where do IR divergencies come from?

This expression diverges if: $E_{q} \rightarrow 0$: soft divergence and or $\theta_{gq} \to 0$ if $m_q = 0$: collinear divergence If the p_g momentum is integrated in $d = 4 - 2\epsilon$ dimensions, these configurations lead to $1/\epsilon$ poles and even $1/\epsilon^2$ poles in the case $m_a = 0$ and $E_g \to 0$ and $\theta_{gq} \to 0$. 51

Divergencies have a "simple" structure

For instance, being z = (p + k)/p in the collinear and massless limit:

$$P_{qq}(z) = C_F \frac{1+z^2}{1-z}$$

Therefore knowing the Born amplitude, the coefficient in front of the $1/\epsilon$ poles is also known, since only the integrals of P_{XY} and $\frac{p_i p_j}{p_i k p_j k}$ have to be calculated.

Cancellations between reals and loops

According to the Kinoshita-Lee-Nauenberg (KLN) theorem: If you are inclusive over the possible final states, the IR divergencies related the final state (FS) cancel:

LOOP+REALS at a given $\mathcal{O}(\alpha_s^n) \Longrightarrow$ no IR FS divergencies at $\mathcal{O}(\alpha_s^n)$

The interference of these 2 diagrams has soft divergencies,

which cancel exactly against the interference of these two diagrams...

... if one looks at *inclusive tt* production

jet

IR safety

I cannot require the calculation of the cross section of "exactly the $t\bar{t}$ " final state: it is not IR safe.

Indeed, the presence of an infinitesimally soft gluon would change the categorisation of the event \longrightarrow DIVERGENT quantity.

The same story for the cross section of $t\bar{t}q$ production, where q is a light quark. The presence of an infinitesimally soft, or hard and collinear, gluon would lead to the same problem.

Jets observables are precisely IR-safe quantities that deals with the hard radiation of light colored particles.

Jets are IR-safe final-state objects, while partons are not!

... still the divergencies do not cancel for the initial state

It looks bad, but it is actually the reason why the dependence on the factorisation scale diminishes. Let's see why:

$$t = \log \frac{Q^2}{\mu^2}$$

$$\frac{df_q(x,t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{qq}(z) f_i(\frac{x}{z},t) + P_{qg}(z) f_g(\frac{x}{z},t) \right]$$

$$\frac{df_g(x,t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{gq}(z) \sum_{i=q,\bar{q}} f_i\left(\frac{x}{z},t\right) + P_{gg}(z) f_g\left(\frac{x}{z},t\right) \right]$$

DGLAP equation for PDFs:

$$P_{qg} = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$
$$P_{gq}(z) = P_{qq}(1-z) = C_F \frac{1+(1-z)^2}{z}$$
$$P_{gg}(z) = 2C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right]$$

Parton Distribution Functions (PDFs), and consequently the predictions for hadroproduction cross sections, depend on the factorisation scale μ_F via the DGLAP equations.

reduction of μ_F dependence

The partial cancellation that we have observed for μ_R via the renormalisation takes place also in the case of μ_F via PDFs.

PDE evolution:

 $\frac{1}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{qq}(z) f_i(\frac{x}{z}, t) + P_{qg}(z) f_g(\frac{x}{z}, t) \right]$ $\frac{df_g(x, t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{gq}(z) \sum_{i=q,\bar{q}} f_i\left(\frac{x}{z}, t\right) + P_{gg}(z) f_g\left(\frac{x}{z}, t\right) \right]$ $t = \log \frac{Q^2}{\mu^2}$

Singularities structure:

reduction of μ_F dependence

The partial cancellation that we have observed for μ_R via the renormalisation takes place also in the case of μ_F via PDFs.

PDF evolution:

$$\frac{df_q(x,t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[\frac{P_{qq}(z)}{f_i(\frac{x}{z},t)} + P_{qg}(z) f_g(\frac{x}{z},t) \right]$$
$$\frac{df_g(x,t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[\frac{P_{gq}(z)}{\sum_{i=q,\bar{q}}} f_i\left(\frac{x}{z},t\right) + P_{gg}(z) f_g\left(\frac{x}{z},t\right) \right]$$
$$t = \log \frac{Q^2}{\mu^2}$$

Singularities structure:

Depending on the kinematical condition: $|\mathcal{M}_{q_ig \to t\bar{t}q_f}|^2 \sim |\mathcal{M}_{q\bar{q} \to t\bar{t}}|^2 P_{qg}$ for $q_f \parallel g$ $|\mathcal{M}_{q_ig \to t\bar{t}q_f}|^2 \sim |\mathcal{M}_{gg \to t\bar{t}}|^2 P_{gq}$ for $q_f \parallel q_i$

Together with $1/\epsilon$ poles, collinear divergencies exhibit $\log(\mu^2/Q^2)$ terms factorising P_{XY} .

They need to be subtracted at the scale $\mu = \mu_F$, and their μ_F dependence cancel exactly the $\mathcal{O}(\alpha_s)$ dependence on μ_F from PDF evolution.

μ_F and μ_R dependence form LO to NLO (revisited)

 $\mathscr{M}_{1-\text{loop}}^{\text{ren}}$ contains terms that cancel the leading dependence of $\mathscr{M}_{\text{tree}}$ on μ_R and $|\mathscr{M}|^2_{\mathscr{O}(\alpha_s^{n+1})}$ for real radiation (and loop) contain terms that cancel the PDF evolution of the PDFs associated to $|\mathscr{M}_{\text{tree}}|^2_{\mathscr{O}(\alpha_s^n)}$ at Born.

NLO QCD corrections cancel the leading dependence of LO on μ_R and μ_F .

For instance: $pp \rightarrow t\bar{t}t\bar{t} \sim \alpha_s^4$ at LO.

By varying $\mu_R = \mu_F$ by a factor of 2 up/down, the scale uncertainty moves from: -40%/+80% at LO to -25%/+25% at NLO!

Automation at NLO QCD:

how to put things together

The structure of MadGraph resembles the steps of a calculation that in principle one could do with pencil and paper:

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro '14 Frederix, Frixione, Hirschi, DP, Shao, Zaro '18

Phase space integration

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$

contains $\int d^d l$

- For complicated processes the integrations have to be done via MonteCarlo techniques, in an integer number of dimensions
- Divergences have to be canceled explicitly
- Slicing/Subtraction methods have been developed to extract divergences from the phase-space integrals

Again slides stolen from Marco Zaro, who gave this lecture at the 2022 edition of this school. More details can be found on this particular subject in his slides

Example

• Suppose that we can cast the phase space integral in the form

$$\int_0^1 dx f(x) \quad \text{with} \quad f(x) = \frac{g(x)}{x} \quad \text{ and } g(x) \text{ a regular function}$$

• We introduce a regulator which renders the integral finite

$$\int_0^1 dx x^{\varepsilon} f(x) = \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• The divergence will turn into a pole in ε . How can we extract the pole?

Phase space slicing

$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• We introduce a small parameter $\delta \ll 1$:

$$\begin{split} \lim_{\varepsilon \to 0} \int_{0}^{1} dx \frac{g(x)}{x^{1-\varepsilon}} &= \lim_{\varepsilon \to 0} \left(\int_{0}^{\delta} dx \frac{g(x)}{x^{1-\varepsilon}} + \int_{\delta}^{1} dx \frac{g(x)}{x^{1-\varepsilon}} \right) \\ &\simeq \lim_{\varepsilon \to 0} \left(\int_{0}^{\delta} dx \frac{g(0)}{x^{1-\varepsilon}} + \int_{\delta}^{1} dx \frac{g(x)}{x^{1-\varepsilon}} \right) \\ &= \lim_{\varepsilon \to 0} \frac{\delta^{\varepsilon}}{\varepsilon} g(0) + \int_{\delta}^{1} dx \frac{g(x)}{x} \\ &= \lim_{\varepsilon \to 0} \left(\left| \frac{1}{\varepsilon} \right| + \log \delta \right) g(0) + \left| \int_{\delta}^{1} dx \frac{g(x)}{x} \right| \\ &\text{finite integral} \\ &\text{pole in } \varepsilon \end{split}$$

Marco Zaro, 23-24/03/2022

Subtraction method

$$\lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} f(x) = \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}}$$

• Add and subtract g(0)/x

$$\begin{split} \lim_{\varepsilon \to 0} \int_0^1 dx \frac{g(x)}{x^{1-\varepsilon}} &= \lim_{\varepsilon \to 0} \int_0^1 dx x^{\varepsilon} \left(\frac{g(0)}{x} + \frac{g(x)}{x} - \frac{g(0)}{x} \right) \\ &= \lim_{\varepsilon \to 0} \int_0^1 dx \left(\frac{g(0)}{x^{1-\varepsilon}} + \frac{g(x) - g(0)}{x^{1-\varepsilon}} \right) \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} g(0) + \int_0^1 dx \frac{g(x) - g(0)}{x} \quad \text{finite integral} \\ & \text{pole in } \varepsilon \end{split}$$

Slicing vs Subtraction

 In both cases the pole is extracted and we end up with a finite remainder:

$$g(0)\log\delta + \int_{\delta}^{1} dx \frac{g(x)}{x} \int_{0}^{1} dx \frac{g(x) - g(0)}{x}$$

- Subtraction acts like a plus distribution
- Slicing works only for small δ : δ -independence of cross section and distributions must be proven; subtraction is exact
- Both methods have cancelations between large numbers. If for a given observable $\lim_{x\to 0} O(x) \neq O(0)$ or we choose a too small bin size, instabilities will arise (we cannot ask for an infinite resolution)
- Subtraction is in general more flexible: good for automation

NLO with subtraction

$$\sigma_{NLO} = \int d^4 \Phi_n \mathcal{B} + \int d^4 \Phi_n \mathcal{V} + \int d^4 \Phi_{n+1} \mathcal{R}$$

• With the subtraction terms the expression becomes

$$\begin{split} \sigma_{NLO} &= \int d^4 \Phi_n \mathcal{B} \\ &+ \int d^4 \Phi_n \left(\mathcal{V} + \int d^d \Phi_1 \mathcal{C} \right) \overset{\text{Poles cancel from}}{\underset{\varepsilon \to 0}{d-\text{dim integration}}} \\ &+ \int d^4 \Phi_{n+1} \left(\mathcal{R} - \mathcal{C} \right) \overset{\text{Integrand is finite in}}{\underset{\text{4 dimension}}{4 \text{ dimension}}} \end{split}$$

 Terms in brackets are finite and can be integrated numerically in d=4 and independently one from another

The subtraction term

- The subtraction term C should be chosen such that:
 - It exactly matches the singular behaviour of R
 - It can be integrated numerically in a convenient way
 - It can be integrated exactly in d dimension, leading to the soft and/or collinear poles in the dimensional regulator
 - It is process independent (overall factor times Born)
- QCD comes to help: structure of divergences is universal:

$$(p+k)^{2} = 2E_{p}E_{k}(1-\cos\theta_{pk})$$
• Collinear singularity:

$$\lim_{p//k} |M_{n+1}|^{2} \simeq |M_{n}|^{2} P^{AP}(z)$$
• Soft singularity:

$$\lim_{k \to 0} |M_{n+1}|^{2} \simeq \sum_{ij} |M_{n}^{ij}|^{2} \frac{p_{i}p_{j}}{p_{i}k p_{j}k}$$
• 4/03/2022

Marco Zaro, 23-24/03/2022

Automation at NLO QCD: some results you can obtain with MadGraph

1,00

⁸⁰⁰⁻ √s [⁹⁰⁰/¹⁰⁰⁰]¹⁰⁰⁰

⊋ 1.2 €-/- -1

m(tł) [GeV]

1³ 1⁰ 1⁸

