
NLO EW 

one additional layer of 
complexity 
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Relevance of EW Precision Observables
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EWPO were crucial in order to constrain the H-
boson and top-quark mass.  
Today EWPO can be used to check the internal 
consistency of the SM. 
In models where they can be calculated, as in the 
MSSM, EWPO can be used to constrain the 
parameter space. 

Precision Electroweak measurements
on the Z resonance hep-ex/0509008
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NLO EW 

what about cross sections at 
the LHC? 
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In general small % effects on total cross sections, BUT .. 
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Process Syntax Cross section (in pb) Correction (in %)

LO NLO

pp → e+νe p p > e+ ve QCD=0 QED=2 [QED] 5.2498 ± 0.0005 · 103 5.2113 ± 0.0006 · 103 −0.73 ± 0.01

pp → e+νej p p > e+ ve j QCD=1 QED=2 [QED] 9.1468 ± 0.0012 · 102 9.0449 ± 0.0014 · 102 −1.11 ± 0.02

pp → e+νejj p p > e+ ve j j QCD=2 QED=2 [QED] 3.1562 ± 0.0003 · 102 3.0985 ± 0.0005 · 102 −1.83 ± 0.02

pp → e+e− p p > e+ e- QCD=0 QED=2 [QED] 7.5367 ± 0.0008 · 102 7.4997 ± 0.0010 · 102 −0.49 ± 0.02

pp → e+e−j p p > e+ e- j QCD=1 QED=2 [QED] 1.5059 ± 0.0001 · 102 1.4909 ± 0.0002 · 102 −1.00 ± 0.02

pp → e+e−jj p p > e+ e- j j QCD=2 QED=2 [QED] 5.1424 ± 0.0004 · 101 5.0410 ± 0.0007 · 101 −1.97 ± 0.02

pp → e+e−µ+µ− p p > e+ e- mu+ mu- QCD=0 QED=4 [QED] 1.2750 ± 0.0000 · 10−2 1.2083 ± 0.0001 · 10−2 −5.23 ± 0.01

pp → e+νeµ−ν̄µ p p > e+ ve mu- vm~ QCD=0 QED=4 [QED] 5.1144 ± 0.0007 · 10−1 5.3019 ± 0.0009 · 10−1 +3.67 ± 0.02

pp → He+νe p p > h e+ ve QCD=0 QED=3 [QED] 6.7643 ± 0.0001 · 10−2 6.4914 ± 0.0012 · 10−2 −4.03 ± 0.02

pp → He+e− p p > h e+ e- QCD=0 QED=3 [QED] 1.4554 ± 0.0001 · 10−2 1.3700 ± 0.0002 · 10−2 −5.87 ± 0.02

pp → Hjj p p > h j j QCD=0 QED=3 [QED] 2.8268 ± 0.0002 · 100 2.7075 ± 0.0003 · 100 −4.22 ± 0.01

pp → W+W−W+ p p > w+ w- w+ QCD=0 QED=3 [QED] 8.2874 ± 0.0004 · 10−2 8.8017 ± 0.0012 · 10−2 +6.21 ± 0.02

pp → ZZW+ p p > z z w+ QCD=0 QED=3 [QED] 1.9874 ± 0.0001 · 10−2 2.0189 ± 0.0003 · 10−2 +1.58 ± 0.02

pp → ZZZ p p > z z z QCD=0 QED=3 [QED] 1.0761 ± 0.0001 · 10−2 0.9741 ± 0.0001 · 10−2 −9.47 ± 0.02

pp → HZZ p p > h z z QCD=0 QED=3 [QED] 2.1005 ± 0.0003 · 10−3 1.9155 ± 0.0003 · 10−3 −8.81 ± 0.02

pp → HZW+ p p > h z w+ QCD=0 QED=3 [QED] 2.4408 ± 0.0000 · 10−3 2.4809 ± 0.0005 · 10−3 +1.64 ± 0.02

pp → HHW+ p p > h h w+ QCD=0 QED=3 [QED] 2.7827 ± 0.0001 · 10−4 2.4259 ± 0.0027 · 10−4 −12.82 ± 0.10

pp → HHZ p p > h h z QCD=0 QED=3 [QED] 2.6914 ± 0.0003 · 10−4 2.3926 ± 0.0003 · 10−4 −11.10 ± 0.02

pp → tt̄W+ p p > t t~ w+ QCD=2 QED=1 [QED] 2.4119 ± 0.0003 · 10−1 2.3025 ± 0.0003 · 10−1 −4.54 ± 0.02

pp → tt̄Z p p > t t~ z QCD=2 QED=1 [QED] 5.0456 ± 0.0006 · 10−1 5.0033 ± 0.0007 · 10−1 −0.84 ± 0.02

pp → tt̄H p p > t t~ h QCD=2 QED=1 [QED] 3.4480 ± 0.0004 · 10−1 3.5102 ± 0.0005 · 10−1 +1.81 ± 0.02

pp → tt̄j p p > t t j QCD=3 QED=0 [QED] 3.0277 ± 0.0003 · 102 2.9683 ± 0.0004 · 102 −1.96 ± 0.02

pp → jjj p p > j j j QCD=3 QED=0 [QED] 7.9639 ± 0.0010 · 106 7.9472 ± 0.0011 · 106 −0.21 ± 0.02

pp → tj p p > t j QCD=0 QED=2 [QED] 1.0613 ± 0.0001 · 102 1.0539 ± 0.0001 · 102 −0.70 ± 0.02

Table 2. Processes considered in section 6.2. The second column reports the MG5 aMC syntax used to generate them. The third and fourth
columns display the fully-inclusive results for the quantities defined in eq. (6.12). The fifth column shows the results for the fractional correction
defined in eq. (6.14). All uncertainties are due to MC integration errors.
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to achieve a given accuracy — more details on this item can be found in section 2.4.3 of

ref. [17]. The overall runtime to compute all of the results presented in this section is a

couple of weeks on O(200) CPUs.

As was mentioned in section 2, MadLoop can choose dynamically which integral-

reduction module to employ; this is done in an order that is pre-defined by the user. In

the current MG5 aMC version, the default order is the following. One starts with double-

precision arithmetic, and Ninja is used first. If the internal numerical stability tests are not

passed (see section 2.4.2 of ref. [17]), Collier is used instead. If that also fails to provide

a stable result, CutTools is finally adopted. Yet another unstable result entails the use

of quadruple-precision computations, which are available in both Ninja and CutTools

(called again by MadLoop in this order, if necessary). The Ninja and CutTools integral-

reduction modules obtain the scalar integrals from OneLoop [114]. For the processes

considered in this paper, we have found that, with the accuracy as specified above, an

overall (i.e. relevant to all of the processes combined) negligible amount of O(100) phase-

space points have required quadruple-precision calculations, all of which were then deemed

to be numerically stable.

6.2 NLO EW corrections

In this section we present the leading LO and second-leading NLO (i.e. NLO EW) results

for a variety of processes, whose complete list can be found in the first column of table 2.

The second column of that table reports instead the MG5 aMC commands used to generate

those processes. These adhere to the general syntax reported in section 2; note in particular

the keywords34 that determine which coupling-constant combinations are considered in the

calculations, according to eqs. (2.8) and (2.9).

We start by looking at fully-inclusive rates, obtained with the conditions and accep-

tance cuts given in section 6.1. The third and fourth columns in table 2 report the LO

and NLO results, defined according to eq. (6.12). The fifth column displays instead the

fractional correction (given in percent) due to NLO EW effects, i.e.:

δEW =
ΣNLO2

ΣLO1

=
NLO

LO
− 1 . (6.14)

As was anticipated in section 6.1, all of the uncertainties reported in the three rightmost

columns in table 2 are MC integration errors; as one can see, in absolute value they are

almost always well below the per-mille level.35

Table 2 confirms the well-known fact that NLO EW effects to fairly inclusive observ-

ables are mostly negative, and rather small in absolute value (a few percent). Several

34The keyword [QED] is conventional, and it implies that both electromagnetic and weak effects (i.e. the

complete O(α) corrections) are taken into account, since both are included in the loop qcd qed sm Gmu

model. Restrictions to the QED-only or weak-only cases can be achieved by adopting a simpler theory

model (for those processes for which these restrictions are meaningful).
35The largest fractional error (still a mere 1.1 ·10−3 on the NLO cross section) affects HHW+ production.

We have checked that this is dominated by the opening at the NLO of a new t-channel configuration where

an initial-state photon couples directly to the W+. This channel is not mapped ideally by our phase-space

parametrisation.
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ref. [17]. The overall runtime to compute all of the results presented in this section is a

couple of weeks on O(200) CPUs.

As was mentioned in section 2, MadLoop can choose dynamically which integral-

reduction module to employ; this is done in an order that is pre-defined by the user. In

the current MG5 aMC version, the default order is the following. One starts with double-

precision arithmetic, and Ninja is used first. If the internal numerical stability tests are not

passed (see section 2.4.2 of ref. [17]), Collier is used instead. If that also fails to provide

a stable result, CutTools is finally adopted. Yet another unstable result entails the use

of quadruple-precision computations, which are available in both Ninja and CutTools

(called again by MadLoop in this order, if necessary). The Ninja and CutTools integral-

reduction modules obtain the scalar integrals from OneLoop [114]. For the processes

considered in this paper, we have found that, with the accuracy as specified above, an

overall (i.e. relevant to all of the processes combined) negligible amount of O(100) phase-

space points have required quadruple-precision calculations, all of which were then deemed

to be numerically stable.

6.2 NLO EW corrections

In this section we present the leading LO and second-leading NLO (i.e. NLO EW) results

for a variety of processes, whose complete list can be found in the first column of table 2.

The second column of that table reports instead the MG5 aMC commands used to generate

those processes. These adhere to the general syntax reported in section 2; note in particular

the keywords34 that determine which coupling-constant combinations are considered in the

calculations, according to eqs. (2.8) and (2.9).

We start by looking at fully-inclusive rates, obtained with the conditions and accep-

tance cuts given in section 6.1. The third and fourth columns in table 2 report the LO

and NLO results, defined according to eq. (6.12). The fifth column displays instead the

fractional correction (given in percent) due to NLO EW effects, i.e.:

δEW =
ΣNLO2

ΣLO1

=
NLO

LO
− 1 . (6.14)

As was anticipated in section 6.1, all of the uncertainties reported in the three rightmost

columns in table 2 are MC integration errors; as one can see, in absolute value they are

almost always well below the per-mille level.35

Table 2 confirms the well-known fact that NLO EW effects to fairly inclusive observ-

ables are mostly negative, and rather small in absolute value (a few percent). Several

34The keyword [QED] is conventional, and it implies that both electromagnetic and weak effects (i.e. the

complete O(α) corrections) are taken into account, since both are included in the loop qcd qed sm Gmu

model. Restrictions to the QED-only or weak-only cases can be achieved by adopting a simpler theory

model (for those processes for which these restrictions are meaningful).
35The largest fractional error (still a mere 1.1 ·10−3 on the NLO cross section) affects HHW+ production.

We have checked that this is dominated by the opening at the NLO of a new t-channel configuration where

an initial-state photon couples directly to the W+. This channel is not mapped ideally by our phase-space

parametrisation.
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Enhancements: final-state radiation (FSR)
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Figure 5: Invariant mass distribution around the Z peak (left) and relative effect of different
contributions (right), for bare muons and recombined electrons.
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Figure 6: High tail of the invariant mass distribution (left) and relative effect of different contri-
butions (right), for bare muons and recombined electrons.

where p⊥,! and η! are the transverse momentum and the pseudo-rapidity of the charged

leptons, respectively.

Our results are obtained for muon pair final states. However, we also show results for

recombined electrons in the case of the invariant mass distribution. In fact, we assume

perfect isolation of photons from the muon, which is experimentally achievable with good

accuracy: the resulting correction is therefore amplified by large muon mass collinear

logarithms, because the photon emission is not treated inclusively in the region around the

muon. In the case of electrons, it is not possible experimentally to separate them from

the photon track, when the latter lies within a cone around the lepton smaller than the

detector angular resolution. We adopt the following recombination procedure

• photons with a rapidity |ηγ | > 2.5 are never recombined to the electron;

• if the photon rapidity is |ηγ | < 2.5 and Reγ =
√

(ηe − ηγ)2 + φ2
eγ < 0.1 (φeγ is the

angle between the photon and the electron in the transverse plane), then the photon

is recombined with the electron, i.e. the momenta of the two particles are added and

associated with the momentum of the electron;

– 13 –

Carloni Calame, Montagna, Nicrosini, Vicini  ‘15

 In sufficiently exclusive observable FSR induces corrections ~                              .  
 Photon-fermion recombination reduces the size of this effect.               

αQ2
ℓ log2 (p2

T(ℓ)/mℓ2)
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Enhancements: Sudakov logarithms 
Weak corrections at large scales are not negligible for a general process due to 
the Sudakov Logarithms ~                          .
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Figure 7. Transverse momentum of the hardest same-flavour dressed-lepton pair in the processes of
eq. (6.17) (left panel), and Higgs transverse momentum in the processes of eq. (6.18) (right panel).

We have chosen the two processes in eq. (6.17) in order to be definite, as representatives of

the class of reactions with four final-state leptons; both have been studied before [26, 27,

30, 35, 130, 131]. In fact, without any additional complications, MG5 aMC is able to deal

with any process that belongs to this class, regardless of the particular flavour and charge

combinations.

In detail, the definitions of the pT (ll) (relevant to pp → e+e−µ+µ−) and pT (lν) (relevant

to pp → e+νeµ−ν̄µ) observables are the following. For the former, one uses dressed leptons;

the e+e− and µ+µ− pairs transverse momenta are then computed, and the largest of the

two is set equal to pT (ll). In the latter case, charged leptons are again dressed first; then,

the transverse momenta of the e+νe and µ−ν̄µ pairs are computed (by using the MC truth

information to find the neutrinos), and the largest of the two is set equal to pT (lν). The

NLO EW corrections behave rather differently for the two processes. While for the four

charged lepton process they display the typical Sudakov behaviour at high pT , for the other

process the corrections are positive and growing for pT ! 40 GeV, starting to decrease only

towards pT " 400 GeV. We point out that the two processes have significant differences in

their underlying mechanisms. Firstly, although both 2l2ν and 4l production are dominated

by di-boson resonant contributions (namely, di-W and di-Z, respectively), it is only the

former case that features diagrams with t-channel spin-one exchanges (thus enhanced at

large momentum transfers). These appear in γγ-initiated processes, owing to the direct

γW+W− coupling. Secondly, partonic processes such as γq → W+∗W−∗q′ that give rise

to 2l2ν final states may be enhanced at large lepton-pair pT ’s owing to quasi-collinear

q∗ → W ∗q′ splittings (see e.g. ref. [121]). While a similar mechanism also occurs in 4l

production, in that case its effects are balanced by a stronger suppression than in the

case of 2l2ν production.39 Finally, at the NLO 2l2ν production features a real-emission

contribution due to an underlying tW doubly-resonant mechanism, which might induce very

39The overall impact of quasi-collinear enhancements on observable cross sections ultimately depends on

the interplay between their kinematics characteristics, the partonic matrix elements, and PDF effects —

see e.g. refs. [132, 133] for discussions on this point.
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Figure 8. Transverse momentum of the hardest vector boson in the processes of eq. (6.19) (left
panel), and transverse momentum of the Higgs boson in the processes of eq. (6.20) (right panel).
Some of the histograms in the main frames are rescaled as indicated in order to enhance their
visibility.

since it receives contributions from real-emission diagrams with an s-channel top quark

(i.e. from an underlying t∗W−Z or t̄∗W+Z production mechanism). Thus, while tech-

nically this process is doable in our setup by setting the top width equal to its physical

value in order to prevent the matrix elements from diverging on the top resonance (see

section 5.5), potentially it still poses the problems common to all processes which, at the

NLO, “interfere” with a top-induced “background” (such as instabilities in the numerical

integration caused by extremely large K factors). We have already discussed an example

(W+∗W−∗ production, eq. (6.17)) where such an interference in practice does not lead to

any issues at the perturbative orders we are interested in. However, the case of ZW−W+

production is much more involved, and therefore we prefer to postpone its study to when

MG5 aMC will feature an automated treatment of the subtraction or removal of resonant

contributions, with procedures analogous to those already considered in the literature in

different contexts.41 Another, simpler, solution is that of performing the computation in a

scheme with four flavours. This will not be done here, but it is feasible with the present

version of MG5 aMC (we note that a 4FS restriction of the OS model is available, while

its CM counterpart has still to be constructed).42

From the inset in left panel of figure 8, we see that ZZZ production exhibits the

typical behaviour of NLO EW corrections, which are small at small transverse momentum,

and grow in absolute value with pT . The other two processes in eq. (6.19) display a more

intricate behaviour, owing to a combination of effects: the virtual Sudakov corrections,

which decrease the rates; and the positive enhancement of the cross section, due to the

41The procedures that are being implemented in MG5 aMC are fully local in the phase-space of final-

state particles, such as those of refs. [145–153]. Global [134, 154–156] or semi-local [157–160] approaches

are not suited to automated observable-independent short-distance computations.
42Another possibility in the context of a five-flavour computation is that of adding a dedicated integration

channel for each of the new resonant contributions that open at the NLO level.
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General aspects of  
one-loop EW amplitudes 
and their renormalisation 
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Ansgar Denner,  arXiv:0709.1075

I focus in this lecture on the LHC, but in a precision machine 
such as ILC the content of the following slides is even more 

important!

http://arxiv.org/abs/arXiv:0709.1075


* Remember that in the on-shell scheme for masses and wave-function renormalisation, no 
loops corrections on the external legs have to be explicitly computed (LSZ).

Why is NLO EW more complicated than NLO QCD? 
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pp → μ+νμ One-Loop QCD diagrams*:
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Why is NLO EW more complicated than NLO QCD? 

pp → μ+νμ One-Loop EW diagrams
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More diagrams, more particles, more 
interactions, more scales 



More renormalisation parameters, but not more than 13

In the EW sector of the SM there are 3 independent parameters for the gauge 
interactions, the mass of the Higgs, and 9 fermion masses (CKM diagonal in 
these slides). 
In the so called alpha(0)-scheme, with massive particles renormalised on-shell, 
the 3 independent parameters for the gauge sector are: 

with α measured in the Thomson scattering, with zero-momentum transferred. 
All the other EW parameters are predictions: 

α MW MZ

On the other hand, one can change input parameters : 

or renormalisation conditions for masses     on-shell —> MSbar,  

and couplings 

v , GF , sin(θW) , yt , λ , ρ , etc . . .

{α , MW , MZ} → {Gμ , MW , MZ} , {α , Gμ , MW}

α(0) → α(MZ) , Gμ , αMS
81
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The first three items in this list specify a renormalization scheme.
Putting the counterterms equal to zero, the renormalized parameters equal the bare

parameters and we recover the first approach.
However, we can choose the counterterms such that the finite renormalized parameters

are equal to physical parameters in all orders of perturbation theory. This is the so-
called on-shell renormalization scheme. In the SM one uses the masses of the physical
particles MW , MZ , MH , mf , the charge of the electron e and the quark mixing matrix
Vij as renormalized parameters. This scheme was proposed by Ross and Taylor [20]
and is widely used in the electroweak theory. The advantage of the on-shell scheme
is that all parameters have a clear physical meaning and can be measured directly in
suitable experiments1. Furthermore the Thomson cross section from which e is obtained
is exact to all orders of perturbation theory. However, not all of the particle masses are
known experimentally with good accuracy. Therefore other schemes may sometimes be
advantageous.

Renormalization of the parameters is sufficient to obtain finite S-matrix elements,
but it leaves Green functions divergent. This is due to the fact that radiative correc-
tions change the normalization of the fields by an infinite amount. In order to get finite
propagators and vertex functions the fields have to be renormalized, too. Furthermore
radiative corrections provide nondiagonal corrections to the mass matrices so that the
bare fields are no longer mass eigenstates. In order to rediagonalize the mass matrices
one has to introduce matrix valued field renormalization constants. These allow to define
the renormalized fields in such a way that they are the correct physical mass eigenstates
in all orders of perturbation theory. If one does not renormalize the fields in this way,
one needs a nontrivial wave function renormalization for the external particles. This is
required in going from Green functions to S-matrix elements in order to obtain a properly
normalized S-matrix.

The results for physical S-matrix elements are independent of the specific choice of field
renormalization. There exist many different treatments in the literature [21, 22, 23, 24, 25].
Calculations without field renormalization were performed by [26].

3.1 Renormalization constants and counterterms

In the following we specify the on-shell renormalization scheme for the electroweak SM
quantitatively. As independent parameters we choose the physical parameters specified in
(2.22). The renormalized quantities and renormalization constants are defined as follows
(we denote bare quantities by an index 0)

e0 = Zee = (1 + δZe)e,

M2
W,0 = M2

W + δM2
W ,

M2
Z,0 = M2

Z + δM2
Z , (3.1)

M2
H,0 = M2

H + δM2
H ,

mf,i,0 = mf,i + δmf,i,

1This is not the case for the quark masses, due to the presence of the strong interaction. In practice
these are replaced by suitable experimental input parameters (see Sect. 8.1).
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the second are only relevant for Green functions and drop out when calculating S-matrix
elements. Nevertheless their use is very convenient in the on-shell scheme. They not only
allow to eliminate the explicit wave function renormalization of the external particles,
but also simplify the explicit form of the renormalization conditions for the physical
parameters considerably.

In the on-shell scheme all renormalization conditions are formulated for on mass shell
external fields. The field renormalization constants, the mass renormalization constant
and the renormalization constant of the quark mixing matrix are fixed using the one-
particle irreducible two-point functions. For the charge renormalization we need one
three-point function. For this we choose the eeγ-vertex function. In the following renor-
malized quantities are denoted by the same symbols as the corresponding unrenormalized
quantities, but with the superscript .̂

As discussed above the first renormalization condition involves the tadpole T , the
Higgs field one-point amputated renormalized Green function

T̂ =
H

!"
#$
!

!!

!!
!!

!
!!!

!!
, (3.4)

and simply states
T̂ = T + δt = 0. (3.5)

As a consequence of this condition no tadpoles need to be considered in actual calculations.
Next we need the renormalized one-particle irreducible two-point functions. These are

defined as follows (we are using the ’t Hooft-Feynman gauge)

Wµ

k

% & % & % & % &' ( ' ( ' ( ' (!"
#$
!

!!

!!
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!
!!!

!! % & % & % & % &' ( ' ( ' ( ' (Wν
= Γ̂W

µν(k)

= −igµν(k
2 − M2

W ) − i

(

gµν −
kµkν

k2

)

Σ̂W
T (k2) − i

kµkν

k2
Σ̂W

L (k2),
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k
% & % & % & % &' ( ' ( ' ( ' (!"

#$
!
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!! % & % & % & % &' ( ' ( ' ( ' (b, ν
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µν(k)

= −igµν(k
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(

gµν −
kµkν

k2

)
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T (k2) − i

kµkν

k2
Σ̂ab

L (k2),

where a, b = A, Z, M2
A = 0, (3.6)

H

k !"
#$
!

!!

!!
!!

!
!!!

!! H
= Γ̂H(k) = i(k2 − M2

H) + iΣ̂H(k2),
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fj

p
! !"

#$
"

""

""
""

"
"""

"" ! fi
= Γ̂f

ij(p)

= iδij(p/ − mi) + i
[
p/ω−Σ̂f,L

ij (p2) + p/ω+Σ̂f,R
ij (p2) + (mf,iω− + mf,jω+)Σ̂f,S

ij (p2)
]
.

The corresponding propagators are obtained as the inverse of these two-point functions.
Note that we have to invert matrices for the neutral gauge bosons and for the fermions.

The renormalized mass parameters of the physical particles are fixed by the require-
ment that they are equal to the physical masses, i.e. to the real parts of the poles of the
corresponding propagators which are equivalent to the zeros of the one-particle irreducible
two-point functions. In case of mass matrices these conditions have to be fulfilled by the
corresponding eigenvalues resulting in complicated expressions. These can be considerably
simplified by requiring simultaneously the on-shell conditions for the field renormalization
matrices. These state that the renormalized one-particle irreducible two-point functions
are diagonal if the external lines are on their mass shell. This determines the nondiagonal
elements of the field renormalization matrices. The diagonal elements are fixed such that
the renormalized fields are properly normalized, i.e. that the residues of the renormal-
ized propagators are equal to one. This choice of field renormalization implies that the
renormalization conditions for the mass parameters (in all orders of perturbation theory)
involve only the corresponding diagonal self energies. Thus we arrive at the following
renormalization conditions for the two-point functions for on-shell external physical fields

R̃e Γ̂W
µν(k)εν(k)

∣∣∣
k2=M2

W

= 0,

Re Γ̂ZZ
µν (k)εν(k)

∣∣∣
k2=M2

Z

= 0, Re Γ̂AZ
µν (k)εν(k)

∣∣∣
k2=M2

Z

= 0,

Γ̂AZ
µν (k)εν(k)

∣∣∣
k2=0

= 0, Γ̂AA
µν (k)εν(k)

∣∣∣
k2=0

= 0,

lim
k2→M2

W

1

k2 − M2
W

R̃e Γ̂W
µν(k)εν(k) = −iεµ(k),

lim
k2→M2

Z

1

k2 − M2
Z

Re Γ̂ZZ
µν (k)εν(k) = −iεµ(k), lim

k2→0

1

k2
Re Γ̂AA

µν (k)εν(k) = −iεµ(k),

Re Γ̂H(k)
∣∣∣
k2=M2

H

= 0, lim
k2→M2

H

1

k2 − M2
H

Re Γ̂H(k) = i,

R̃e Γ̂f
ij(p)uj(p)

∣∣∣
p2=m2

f,j

= 0, R̃e ūi(p
′)Γ̂f

ij(p
′)
∣∣∣
p′2=m2

f,i

= 0,

lim
p2→m2

f,i

p/ + mf,i

p2 − m2
f,i

R̃e Γ̂f
ii(p)ui(p) = iui(p), lim

p′2→m2
f,i

ūi(p
′)R̃e Γ̂f

ii(p
′)

p/′ + mf,i

p′2 − m2
f,i

= iūi(p
′).

(3.7)
ε(k), u(p) and ū(p′) are the polarization vectors and spinors of the external fields. R̃e
takes the real part of the loop integrals appearing in the self energies but not of the quark
mixing matrix elements appearing there. Since we restrict ourselves to the one-loop order
we apply it only to those quantities which depend on the quark mixing matrix at one loop.
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eigenstates. In the one-loop approximation the rotation contained in the fermion wave
function renormalizaton 1 + 1

2δZ
L is simply given by the anti-Hermitean part δZAH of

δZL

δZf,AH
ij =

1

2
(δZf,L

ij − δZf,L†
ij ). (3.14)

Thus we are lead to define the renormalized quark mixing matrix as

Vij = (δik + 1
2δZ

u,AH†
ik )Uu,L

km Ud,L†
mn (δnj + 1

2δZ
d,AH
nj )

= (δik + 1
2δZ

u,AH†
ik )V0,kn(δnj + 1

2δZ
d,AH
nj ).

(3.15)

It has been shown that this condition correctly cancels all one-loop divergencies and that
Vij = V0,ij in the limit of degenerate up- or down-type quark masses [27].

Finally the electrical charge is defined as the full eeγ-coupling for on-shell external
particles in the Thomson limit. This means that all corrections to this vertex vanish
on-shell and for zero momentum transfer3

Aµ! " ! " ! "# $ # $ # $%&
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!
!!
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!!

! ! " ! " ! "# $ # $ # $)*
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!!

!!
!!

!
!!!
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!!
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! ""#""
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e−, p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p=p′, p2=p′2=m2

e

= ieū(p)γµu(p). (3.16)

The momenta p, p′ flow in the direction of the fermion arrows. Due to our choice for
the field renormalization the corrections in the external legs vanish and we obtain the
condition

ū(p)Γeeγ
µ (p, p)u(p)

∣∣∣
p2=m2

e

= ieū(p)γµu(p), (3.17)

for the (amputated) vertex function

Γ̂eeγ
µ (p, p′) =

Aµ! " ! " ! "# $ # $ # $)*
+,
!

!!

!!
!!

!
!!!

!! ""#""

$$$%$$

e+, p′

e−, p

. (3.18)

3.3 Explicit form of renormalization constants

The renormalized quantities defined in Sect. 3.2 consist of the unrenormalized ones
and the counterterms as specified by the Feynman rules in App. A. The renormalization
conditions allow to express the counterterms by the unrenormalized self energies at special
external momenta. This is evident for all renormalization constants apart from the one

3Due to the wave function renormalization of the external particles the self energy corrections in the
external legs contribute only with a factor 1/2 to the S-matrix elements.
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The bare fields(parameters) in the 
Lagrangian are split into renormalised 
fields(parameters) and renormalisation 
constants, which in turn are derived via the 
following renormalised Green functions:
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for the electrical charge. In this case, however, we can use a Ward identity to eliminate
the vertex function.

From conditions (3.5, 3.8, 3.9) we obtain for the gauge boson and Higgs sector

δt = −T,

δM2
W = R̃e ΣW

T (M2
W ), δZW = −Re

∂ΣW
T (k2)

∂k2

∣∣∣∣∣
k2=M2

W

,

δM2
Z = Re ΣZZ

T (M2
Z), δZZZ = −Re

∂ΣZZ
T (k2)

∂k2

∣∣∣∣∣
k2=M2

Z

,

δZAZ = −2Re
ΣAZ
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Z)

M2
Z

, δZZA = 2
ΣAZ

T (0)

M2
Z

,

δZAA = −
∂ΣAA

T (k2)

∂k2

∣∣∣∣∣
k2=0

,

δM2
H = Re ΣH(M2

H), δZH = −Re
∂ΣH(k2)

∂k2

∣∣∣∣∣
k2=M2

H

.

(3.19)

In the fermion sector (3.10) yields

δmf,i =
mf,i

2
R̃e

(
Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i) + 2Σf,S

ii (mf,i
2)
)
,

δZf,L
ij =

2

m2
f,i − m2

f,j
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[
m2

f,jΣ
f,L
ij (m2

f,j) + mf,imf,jΣ
f,R
ij (m2

f,j)

+(m2
f,i + m2

f,j)Σ
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ij (m2
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]
, i "= j,
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f,j) + mf,imf,jΣ
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ij (m2

f,j) (3.20)

+2mf,imf,jΣ
f,S
ij (m2
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]
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∂
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ii (p2)
]∣∣∣
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.

The use of R̃e ensures reality of the renormalized Lagrangian. Furthermore it yields

δZ†
ij = δZij(m

2
i ↔ m2

j ), (3.21)

and in particular
δZ†

ii = δZii. (3.22)

16

Requiring that tadpoles do not shift the minimum of the Higgs potential and 
that the renormalised masses of the bosons are the on-shell masses: 



Renormalisation alpha(0)-scheme, on-shell masses

84
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T (M2
Z), δZZZ = −Re

∂ΣZZ
T (k2)

∂k2

∣∣∣∣∣
k2=M2

Z

,

δZAZ = −2Re
ΣAZ

T (M2
Z)

M2
Z

, δZZA = 2
ΣAZ

T (0)

M2
Z

,

δZAA = −
∂ΣAA

T (k2)

∂k2

∣∣∣∣∣
k2=0

,

δM2
H = Re ΣH(M2

H), δZH = −Re
∂ΣH(k2)

∂k2

∣∣∣∣∣
k2=M2

H

.

(3.19)

In the fermion sector (3.10) yields

δmf,i =
mf,i

2
R̃e

(
Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i) + 2Σf,S

ii (mf,i
2)
)
,

δZf,L
ij =

2

m2
f,i − m2

f,j

R̃e
[
m2

f,jΣ
f,L
ij (m2

f,j) + mf,imf,jΣ
f,R
ij (m2

f,j)

+(m2
f,i + m2

f,j)Σ
f,S
ij (m2

f,j)
]
, i "= j,

δZf,R
ij =

2

m2
f,i − m2

f,j

R̃e
[
m2

f,jΣ
f,R
ij (m2

f,j) + mf,imf,jΣ
f,L
ij (m2

f,j) (3.20)

+2mf,imf,jΣ
f,S
ij (m2

f,j)
]
, i "= j,

δZf,L
ii = −R̃e Σf,L

ii (m2
f,i) − m2

f,i

∂

∂p2
R̃e

[
Σf,L

ii (p2) + Σf,R
ii (p2) + 2Σf,S

ii (p2)
]∣∣∣

p2=m2
f,i

,

δZf,R
ii = −R̃e Σf,R

ii (m2
f,i) − m2

f,i

∂

∂p2
R̃e

[
Σf,L

ii (p2) + Σf,R
ii (p2) + 2Σf,S

ii (p2)
]∣∣∣

p2=m2
f,i

.

The use of R̃e ensures reality of the renormalized Lagrangian. Furthermore it yields

δZ†
ij = δZij(m

2
i ↔ m2

j ), (3.21)

and in particular
δZ†

ii = δZii. (3.22)

16

Requiring that also the renormalised masses of the fermion are the on-shell 
masses: 
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eigenstates. In the one-loop approximation the rotation contained in the fermion wave
function renormalizaton 1 + 1

2δZ
L is simply given by the anti-Hermitean part δZAH of

δZL

δZf,AH
ij =

1

2
(δZf,L

ij − δZf,L†
ij ). (3.14)

Thus we are lead to define the renormalized quark mixing matrix as

Vij = (δik + 1
2δZ

u,AH†
ik )Uu,L

km Ud,L†
mn (δnj + 1

2δZ
d,AH
nj )

= (δik + 1
2δZ

u,AH†
ik )V0,kn(δnj + 1

2δZ
d,AH
nj ).

(3.15)

It has been shown that this condition correctly cancels all one-loop divergencies and that
Vij = V0,ij in the limit of degenerate up- or down-type quark masses [27].

Finally the electrical charge is defined as the full eeγ-coupling for on-shell external
particles in the Thomson limit. This means that all corrections to this vertex vanish
on-shell and for zero momentum transfer3

Aµ! " ! " ! "# $ # $ # $%&
'(
!

!
!!

!!

!
!!

! ! " ! " ! "# $ # $ # $)*
+,
!

!!

!!
!!

!
!!!

!! ""#""%&
'(
!

!
!!

!!

!
!!

! ""#""

$$$%$$

%&
'(
!

!
!!

!!

!
!!

!

$$$%$$

e+, p′

e−, p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p=p′, p2=p′2=m2

e

= ieū(p)γµu(p). (3.16)

The momenta p, p′ flow in the direction of the fermion arrows. Due to our choice for
the field renormalization the corrections in the external legs vanish and we obtain the
condition

ū(p)Γeeγ
µ (p, p)u(p)

∣∣∣
p2=m2

e

= ieū(p)γµu(p), (3.17)

for the (amputated) vertex function

Γ̂eeγ
µ (p, p′) =

Aµ! " ! " ! "# $ # $ # $)*
+,
!

!!

!!
!!

!
!!!

!! ""#""

$$$%$$

e+, p′

e−, p

. (3.18)

3.3 Explicit form of renormalization constants

The renormalized quantities defined in Sect. 3.2 consist of the unrenormalized ones
and the counterterms as specified by the Feynman rules in App. A. The renormalization
conditions allow to express the counterterms by the unrenormalized self energies at special
external momenta. This is evident for all renormalization constants apart from the one

3Due to the wave function renormalization of the external particles the self energy corrections in the
external legs contribute only with a factor 1/2 to the S-matrix elements.
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and vf , af are the vector and axialvector couplings of the Z-boson to the fermion f , given
explicitly in (A.15). This yields in fact two conditions, namely

0 = −Qf (δZe + δZf,V
ii +

1

2
δZAA) + Λf

V (0) + Λf
S(0) + vf

1

2
δZZA, (3.29)

0 = −Qf δZf,A
ii + Λf

A(0) + af
1

2
δZZA. (3.30)

The first one (3.29) for f = e fixes the charge renormalization constant. The second
(3.30) is automatically fulfilled due to a Ward identity which can be derived from the
gauge invariance of the theory. The same Ward identity moreover yields

Λf
V (0) + Λf

S(0) − QfδZ
f,V
ii + af

1

2
δZZA = 0. (3.31)

Inserting this in (3.29) we finally find (using vf − af = −QfsW/cW )

δZe = −
1

2
δZAA −

sW

cW

1

2
δZZA =

1

2

∂ΣAA
T (k2)

∂k2

∣∣∣∣∣
k2=0

−
sW

cW

ΣAZ
T (0)

M2
Z

. (3.32)

This result is independent of the fermion species, reflecting electric charge universality.
Clearly it does not depend on a specific choice of field renormalization. Consequently the
analogue of (3.17) holds for arbitrary fermions f .

In the on-shell scheme the weak mixing angle is a derived quantity. Following Sirlin
[26] we define it as

sin2 θW = s2
W = 1 −

M2
W

M2
Z

, (3.33)

using the renormalized gauge boson masses. This definition is independent of a specific
process and valid to all orders of perturbation theory.

Since the dependent parameters sW and cW frequently appear, it is useful to introduce
the corresponding counterterms

cW,0 = cW + δcW , sW,0 = sW + δsW . (3.34)

Because of (3.33) these are directly related to the counterterms to the gauge boson masses.
To one-loop order we obtain

δcW

cW
=

1

2

(
δM2

W

M2
W

−
δM2

Z

M2
Z

)

=
1

2
R̃e

(
ΣW

T (M2
W )

M2
W

−
ΣZZ

T (M2
Z)

M2
Z

)

,

δsW

sW
= −

c2
W

s2
W

δcW

cW
= −

1

2

c2
W

s2
W

R̃e

(
ΣW

T (M2
W )

M2
W

−
ΣZZ

T (M2
Z)

M2
Z

)

.

(3.35)

We have now determined all renormalization constants in terms of unrenormalized self
energies. In the next sections we will describe the methods to calculate these self energies
and more general diagrams at the one-loop level.
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All the other counterterms can be obtained as function of those already 
obtained, for example, 
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VVV-coupling:

V2,ν , k2

V1,µ, k1

V3,ρ, k3

!" # " # " # " #$ % $ % $ % $ %" " " "% % % %
$ $ $ $# # # # = −ieC

[
gµν(k2 − k1)ρ + gνρ(k3 − k2)µ + gρµ(k1 − k3)ν

]

with the actual values of V1, V2, V3 and C

AW+W− : C = 1 + δZe + δZW + 1
2δZAA − 1

2
c
sδZZA,

ZW+W− : C = − c
s(1 + δZe − 1

c2
δs
s + δZW + 1

2δZZZ) + 1
2δZAZ . (A.7)

SSSS-coupling:

S1 S3

S2 S4

!
!

!
!

"
"

"!
!

!

"
"

"

= ie2C

with the actual values of S1, S2, S3, S4 and C

HHHH : C = − 3
4s2

M2
H

M2
W

[
1 + 2δZe − 2 δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− δM2

W

M2
W

+ 2δZH

]
,

HHχχ

HHφφ

}
: C = − 1

4s2

M2
H

M2
W

[
1 + 2δZe − 2 δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− δM2

W

M2
W

+ δZH

]
,

χχχχ : C = − 3
4s2

M2
H

M2
W

[
1 + 2δZe − 2 δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− δM2

W

M2
W

]
,

χχφφ : C = − 1
4s2

M2
H

M2
W

[
1 + 2δZe − 2 δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− δM2

W

M2
W

]
,

φφφφ : C = − 1
2s2

M2
H

M2
W

[
1 + 2δZe − 2 δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− δM2

W

M2
W

]
.

(A.8)

SSS-coupling:

S2

S1

S3

!! !
!

"
"

"

= ieC

with the actual values of S1, S2, S3 and C

HHH : C = − 3
2s

M2
H

MW

[
1 + δZe − δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− 1

2
δM2

W

M2
W

+ 3
2δZH

]
,

Hχχ

Hφφ

}
: C = − 1

2s
M2

H

MW

[
1 + δZe − δs

s +
δM2

H

M2
H

+ e
2s

δt
MW M2

H
− 1

2
δM2

W

M2
W

+ 1
2δZH

]
. (A.9)
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VFF-coupling:

F̄1

Vµ

F2

!" # " # " # " #$ % $ % $ % $ %!!"!!

#
#$## = ieγµ(C−ω− + C+ω+)

with the actual values of V, F̄1 , F2 and C+, C−

γf̄ifj :






C+ = −Qf

[
δij

(
1 + δZe + 1

2δZAA

)
+1

2(δZ
f,R
ij + δZf,R†

ij )
]
+ δijg

+
f

1
2δZZA,

C− = −Qf

[
δij

(
1 + δZe + 1

2δZAA

)
+1

2(δZ
f,L
ij + δZf,L†

ij )
]
+ δijg

−
f

1
2δZZA,

Zf̄ifj :






C+ = g+
f

[
δij

(
1 +

δg+

f

g+

f

+ 1
2δZZZ

)
+ 1

2(δZ
f,R
ij + δZf,R†

ij )
]
− δijQf

1
2δZAZ ,

C− = g−
f

[
δij

(
1 +

δg−
f

g−
f

+ 1
2δZZZ

)
+ 1

2(δZ
f,L
ij + δZf,L†

ij )
]
− δijQf

1
2δZAZ ,

W+ūidj :






C+ = 0, C− = 1√
2s

[
Vij

(
1 + δZe − δs

s + 1
2δZW

)
+ δVij

+1
2

∑
k(δZ

u,L†
ik Vkj + VikδZ

d,L
kj )

]
,

W−d̄jui :






C+ = 0, C− = 1√
2s

[
V †

ji

(
1 + δZe − δs

s + 1
2δZW

)
+ δV †

ji

+1
2

∑
k(δZ

d,L†
jk V †

ki + V †
jkδZ

u,L
ki )

]
,

W+ν̄ilj : C+ = 0, C− = 1√
2s

δij

[
1 + δZe − δs

s + 1
2δZW + 1

2(δZ
ν,L†
ii + δZ l,L

ii )
]
,

W−l̄jνi : C+ = 0, C− = 1√
2s

δij

[
1 + δZe − δs

s + 1
2δZW + 1

2(δZ
l,L†
ii + δZν,L

ii )
]
,

(A.13)
where

g+
f = −s

cQf , δg+
f = −s

cQf

[
δZe + 1

c2
δs
s

]
,

g−
f =

I3
W,f−s2Qf

sc , δg−
f =

I3
W,f

sc

[
δZe + s2−c2

c2
δs
s

]
+ δg+

f .

(A.14)

The vector and axial vector couplings of the Z-boson are given by

vf = 1
2(g

−
f + g+

f ) =
I3
W,f−2s2Qf

2sc , af = 1
2(g

−
f − g+

f ) =
I3
W,f

2sc . (A.15)
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But also all the possible counterterms, here some examples: 

This is the QED vertex, 
embedded in the SU(2)xU(1) 
broken symmetry of the SM. 

This is the quartic Higgs self 
coupling. Do you see λ from 
the Higgs potential? 
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Should I use alpha(0) for any calculation? 
NO! 
Only vertices involving a final-state on-shell photon are in a physical 
configuration similar to the Thomson scattering. Otherwise, for large scales, 

ΣAA
T (k2)
k2 − ΣAA

T (k2)
k2

k2=0
∼ ∑

mf

α
3π

Q2
f K2

f [ − 5
3 + log(Q2/m2

f ) + %(m2
f /Q2)] for Q > > 2mf

In other words, this scheme is “Infrared-sensitive” and induces large 
corrections due to the running of alpha from the scale of the mass of the 
electron (0.5 MeV) to the typical ~ 0.1-1 TeV scale at the LHC. 

Unless final-state on-shell photons are considered, other input parameters 
and renormalisation conditions are preferable. Indeed, in these cases the 
alpha(0) scheme artificially enhances loop corrections.
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which is in turn defined via the general parametrization of a two-point unrenormalized
function for a vector boson a into vector boson b:

�ab

µ⌫(k) = �igµ⌫(k
2
�M2

a )�ab � i(gµ⌫ �
kµk⌫
k2

)⌃ab

T (k2)� i
kµk⌫
k2

⌃ab

L (k2) (1.4)

Explicitly

⌃AA

T (k2) =
↵

⇡

1

3� 2✏
{(1� ✏)q2B0(q

2;m,m) + 2m2[B0(q
2;m,m)�B0(0;m,m)]} =

↵

3⇡
{q2B0(q

2;m,m) + 2m2[B0(q
2;m,m)�B0(0;m,m)]� q2/3}+O(✏)(1.5)

where the dimension is D = 4� 2✏ and thus

@⌃AA

T
(k2)

@k2
=

↵

3⇡
{B0(q

2;m,m) + q2B0
0(q

2;m,m) + 2m2B0
0(q

2;m,m)� 1/3}+O(✏)(1.6)

Note also that from the form of eq. (1.5) we obtain

@⌃AA

T
(k2)

@k2

���
k2=0

=
⌃AA

T
(k2)

k2

���
k2=0

(1.7)

which is valid only when k2 = 0 and can be used as alternative definition for eq. (1.3); it
will be useful in section 3. Combining eqs. (1.3) and (1.6) we obtain

�Ze|↵(0) =
1

2

↵

3⇡
{B0(q

2;m,m) + 2m2B0
0(0;m,m)� 1/3} =

1

2

↵

3⇡
(�+ log(µ2/m2)) +O(✏)

(1.8)
with � = 1/✏� �+ log(4⇡) and µ the factorization scale. The last step in the equation can
be verified via the formulae in appendix A. Equation (1.8) tells us that we cannot set the
mass of the fermion equal to zero and that in general NLO QED corrections will generate
terms of the form log(Q2/m2) and thus will introduce an IR sensitivity. This points to the
fact that in general corrections will be artificially enhanced by these logs.

The only exception would be the case of an external photon; the counterterm arising
from the condition in eq. (1.1) cancels exactly the corrections to the interaction vertex with
the fermionic line from which the photon is emitted. For this reason no dependence on the
value of the mass of the fermion is present in that case.

1.2 SM

In the SM eq. (1.2) is slightly different

�Ze = �
1

2
�ZAA �

sW
cW

1

2
�ZZA (1.9)

however only the fermionic contribution to the first term is leading to mass-dependent
logarithms, which is what we are interested for the moment here. Explicitly

�Ze ⇠
1

2

X

f

↵

3⇡
Q2

f
Kf (�+ log(µ2/m2)) +O(✏) (1.10)
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1 ↵(0) scheme

1.1 Pure QED

Let’s start from the case of pure QED with one fermion only (we assume it is the electron,
Qf = 1). After setting the renormalization condition for the fermion field and photon field
in the on-shell scheme, the renormalization of the charge is set by requiring that ↵ is the
quantity measured in the Thomson scattering, i.e., the elastic scattering of a photon on an
electron in the limit of zero momentum transfer. This corresponds to require

ū(p)�̂ee�

µ (p, p)u(p)|p2=m2
e
= ieū(p)�µu(p) (1.1)

where �̂ee�
µ (p, p) is the truncated three-point function for e+e�� with the electron on shell

and the photon at zero momentum.
Writing the renormalized charge as e = e0(1+�Ze), it can be proved via Ward identities

that eq.(1.1) is equivalent to require

�Ze|↵(0) = �
1

2
�ZAA =

1

2

@⌃AA

T
(k2)

@k2

���
k2=0

(1.2)

where �ZAA is the wave-function renormalization constant of the photon defined as

�ZAA = �
@⌃AA

T
(k2)

@k2

���
k2=0

(1.3)
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3 ↵(m2
Z
) scheme (and generalization to ↵(Q2) scheme)

As we said, one has to get rid of the mf dependence, but not via the ↵MS-scheme. The
common way is using the ↵(Q2) scheme, where typically Q = mZ and has been exploited
in the precision studies at the Z peak at LEP.

The first important point to remember is that ↵(Q2) is NOT the straightforward gener-
alization of the condition of eq. 1.1, i.e., �̂ee�

µ (p, p0) for p2 = m2
e, p02 = m2

e and (p+p0)2 = Q2.
The scheme ↵(Q2) is defined as

�Ze|↵(Q2) ⌘ �Ze|↵(0) �
1

2
�↵(Q2) (3.1)

where
�↵(Q2) ⌘ ⇧AA

f 6=t
(0)�<{⇧AA

f 6=t
(Q2)} (3.2)

where ⇧AA

f 6=t
is the contribution to the vacuum polarization induced by all fermion but the

top quark. We remind that the definition of vacuum polarization is

⇧AA(k2) =
⌃AA

T
(k2)

k2
(3.3)

Explicitly, using eqs (3.2),(1.7), (1.5),(1.6) we obtain that each fermion different from the
top contributes to �↵(Q2) as

�↵fermion(Q
2,mf ) =

↵

3⇡
Q2

f
K2

f
{B0(0;mf ,mf )�B0(Q

2;mf ,mf ) +

2m2[B0
0(0;mf ,mf )�

1

q2
(B0(q

2;m,m)�B0(0;m,m))]}+O(✏) (3.4)

For Q > 2mf we obtain

�↵fermion(Q
2,mf ) =

↵

3⇡Q
2
f
K2

f

h
�

8
3 + �2

�
1
2�(3� �2) log

⇣
1��

1+�

⌘ i
= (3.5)

↵

3⇡Q
2
f
K2

f

h
�

5
3 + log(Q2/m2

f
) +O(m2

f
/Q2)

i
(3.6)

with � =

r
1�

4m2
f

Q2 . Clearly eq. (3.6) is valid only for Q >> mf and can be obtained from
eq. (3.4) via the formulae in appendix A. For Q < 2mf we get in the limit Q << mf

�↵fermion(Q
2,mf ) =

↵

3⇡
Q2

f
K2

f

h
�

1

6

m2
f

Q2

i
(3.7)

Some comments are in order at this point. Let’s imagine for one moment that there
is no QCD in this world and �↵(Q2) =

P
f 6=t

�↵fermion(Q2,mf ). We can see combining
eqs. (1.10), (3.1) and (3.6) that in the limit Q >> mf the dependence on mf of the
�Ze|↵(Q2) counterterm disappears. On the other hand we can also see from eq. (3.7) that
if a very heavy electrically charged new BSM fermion exists, it will not affect physics at
the EW scale. Equation (3.7) is simply showing the decoupling limit of QED. We can also
explicitly relate ↵(Q2) to ↵(0)

↵(Q2) =
e2|↵(Q2)

4⇡
=

(e|↵(0)[1 +
1
2�↵(Q2)])2

4⇡
= ↵(0)(1 +�↵(Q2)) +O(↵3) (3.8)
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where I imposed the translation relation between ↵(Q2) and ↵(0) in such a way that the
additional term in the renormalization condition (�1

2�↵(Q2)) cancels exactly the shift in
eq. (3.8). Given the RGE structure, we can even define ↵(Q2) = ↵(0)

1��↵(Q2) resumming
exactly all the ↵n lognQ2/m2

f
terms. Coming back to the real world, since QCD is there,

we can write
�↵(Q2) = �↵leptons(Q

2,mf ) +�↵(5)
quarks(Q

2,mf ) (3.9)

and while we can still write

�↵leptons(Q
2,mf ) ⌘

X

f=e,µ,⌧

�↵fermion(Q
2,mf ) (3.10)

�↵(5)
quarks(Q

2,mf ) is not perturbative and cannot be directly calculated. However, the
quantity �↵(5)

quarks(Q
2,mf ) is related via the optical theorem to the cross section �(e+e� !

hadrons), and thus it can be extracted directly from data. For this reason we see why the top
has been excluded; top production is not included in the data for hadron production. On the
other hand, the W contribution is not included because it is not gauge invariant when the
vacuum polarization is evaluated for Q 6= 0, although it does not suffer the perturbativity
problems of the light fermions. More details on the extraction of �↵(5)

quarks(Q
2,mf ) from

data can be found in [4].
We point out that for the definition of ↵(Q2) the mass of the fermion are not relevant,

they are important only for calculating �↵(Q2), but in principle with enough luminosity
and precision at a future e+e� collider one may directly measure ↵(Q2) without need of
�↵(Q2) simply using

�Ze|↵(Q2) =
1

2

✓
⌃AA

T
(Q2)|f 6=t

Q2
+

@⌃AA

T
(k2)|t,W
@k2

���
k2=0

◆
�

sW
cW

1

2
�ZZA (3.11)

where ⌃AA

T
(k2)|t,W is the contribution of the top and the W to ⌃AA

T
(k2), i.e., all

contributions minus those of f 6= t. However, if one can extract directly ↵(Q2), we do
not see the reason for not extracting directly ↵MS(Q

2) which has a much less convoluted
definition.

4 Relation between the ↵MS and ↵(m2
Z
) scheme

Since we have already calculated the counterterm in a scheme, the counterterm in the MS

scheme is simply given by the part proportional to � = 1/✏ � � + 4⇡ with an additional
term log

⇣
µ
2

Q2

⌘
for canceling the µ dependence; the effect of this counterterm is equivalent

to remove � and set µ2 = Q2. Actually the term to be added is log( µ
2

m
2
thr

) + ✓(Q2
�

m2
thr) log(

m
2
thr

Q2 ) where mthr is the mass of the d.o.f. entering in the run.
For the calculation of �Ze|↵MS(Q

2) we need to take into account also the contribution
of the W to both the terms entering eq. (1.2). We will actually use eq. (3.11) since we
are interested to calculate ↵MS(Q

2)�↵(Q2), obviously any kind of counterterm �e has the
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Starting from the alpha(0) scheme

we can define the alpha(Q) scheme

This is not alpha measured at the Q scale, it is alpha(0) + the difference of the 
QED contributions of the vacuum polarisation with 5 active flavours 
evaluated at the scale Q and me. In practice, it takes care of QED running.
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3 ↵(m2
Z
) scheme (and generalization to ↵(Q2) scheme)

As we said, one has to get rid of the mf dependence, but not via the ↵MS-scheme. The
common way is using the ↵(Q2) scheme, where typically Q = mZ and has been exploited
in the precision studies at the Z peak at LEP.

The first important point to remember is that ↵(Q2) is NOT the straightforward gener-
alization of the condition of eq. 1.1, i.e., �̂ee�

µ (p, p0) for p2 = m2
e, p02 = m2

e and (p+p0)2 = Q2.
The scheme ↵(Q2) is defined as
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where
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where ⇧AA

f 6=t
is the contribution to the vacuum polarization induced by all fermion but the

top quark. We remind that the definition of vacuum polarization is

⇧AA(k2) =
⌃AA

T
(k2)

k2
(3.3)

Explicitly, using eqs (3.2),(1.7), (1.5),(1.6) we obtain that each fermion different from the
top contributes to �↵(Q2) as

�↵fermion(Q
2,mf ) =

↵

3⇡
Q2

f
K2

f
{B0(0;mf ,mf )�B0(Q

2;mf ,mf ) +

2m2[B0
0(0;mf ,mf )�

1

q2
(B0(q

2;m,m)�B0(0;m,m))]}+O(✏) (3.4)

For Q > 2mf we obtain

�↵fermion(Q
2,mf ) =

↵

3⇡Q
2
f
K2

f

h
�

8
3 + �2

�
1
2�(3� �2) log

⇣
1��

1+�

⌘ i
= (3.5)

↵

3⇡Q
2
f
K2

f

h
�

5
3 + log(Q2/m2

f
) +O(m2

f
/Q2)

i
(3.6)

with � =

r
1�

4m2
f

Q2 . Clearly eq. (3.6) is valid only for Q >> mf and can be obtained from
eq. (3.4) via the formulae in appendix A. For Q < 2mf we get in the limit Q << mf

�↵fermion(Q
2,mf ) =

↵

3⇡
Q2

f
K2

f

h
�

1

6

m2
f

Q2

i
(3.7)

Some comments are in order at this point. Let’s imagine for one moment that there
is no QCD in this world and �↵(Q2) =

P
f 6=t

�↵fermion(Q2,mf ). We can see combining
eqs. (1.10), (3.1) and (3.6) that in the limit Q >> mf the dependence on mf of the
�Ze|↵(Q2) counterterm disappears. On the other hand we can also see from eq. (3.7) that
if a very heavy electrically charged new BSM fermion exists, it will not affect physics at
the EW scale. Equation (3.7) is simply showing the decoupling limit of QED. We can also
explicitly relate ↵(Q2) to ↵(0)

↵(Q2) =
e2|↵(Q2)

4⇡
=

(e|↵(0)[1 +
1
2�↵(Q2)])2

4⇡
= ↵(0)(1 +�↵(Q2)) +O(↵3) (3.8)
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alpha(MZ)

On the other hand, while the leptonic contribution can be perturbatively 
calculated, the hadronic contribution must be extracted by measurements. 

Still the best prediction for alpha at Q=MZ can be obtained from the 
measurements of alpha(0) and the measurements of the hadronic contribution.  

The alpha(MZ) scheme is not IR sensitive and has an MSbar-like structure for 
the counterterm of the electric coupling.  
In other words, alpha in the MSbar scheme can be obtained from alpha(Q) + 
a finite term.

We thus obtain

�e|↵(Q2) � �e|↵MS(Q
2) =

↵

2⇡

n
100
27 + (4.9)

�
4
9 log(

m
2
t

Q2 )✓(Q2
�m2

t ) + (4.10)

+3
4

⇣
log(

m
2
W

Q2 )
⌘
�

1
6 (4.11)

+ log(
m

2
W

Q2 )
o

(4.12)

where we kept the corresponding contribution from ↵(Q2) at each line. In conclusion we
can define

�e|↵MS(Q
2) = �e|↵(Q2) �

1

2
�̄↵(Q2) (4.13)

with
�̄↵(Q2) ⌘

↵

⇡

✓
100

27
�

4

9
log(

m2
t

Q2
)✓(Q2

�m2
t ) +

7

4

✓
log

m2
W

Q2

◆
�

1

6

◆
(4.14)

Up to this point we assumed that Q > mW , otherwise we should as in the case of the top
quark correct the contribution below threshold.

With a very similar approach used in the case of eq.(3.8) we get

↵MS(Q
2) = ↵(Q2)(1 + �̄↵(Q2)) +O(↵3 + ↵↵s) (4.15)

Setting Q2 = m2
Z

we get the leading contribution of eq. 10.8 of the PDG. Note that in our
case the calculation is completely independent on the mass of the light fermions.

5 Gµ-scheme

Until this point we completely neglected any contribution from weak origin. Also in the case
of W -induced corrections to �Ze we just considered the QED-like interactions with photons.
One of the best measured quantity in particle physics is the decay width of the muon, which
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We can also extract the EW interactions from muon decay.

Figure 1: a). Tree-level Feynman diagram for ordinary muon decay in Fermi’s current-current
interaction. b). Tree-level standard model diagram for ordinary muon decay indicating the
W-boson mediated weak interaction between the leptonic currents.

in which the rare events would be found. Backgrounds and cuts are determined
from allowed events outside and near the forbidden box. Once the analysis is
complete, the blinded box is opened to see if any events have survived. These
disciplined procedures provide a needed level of integrity to the experiments.

2. Muon lifetime

2.1. Fermi constant GF

The strength of the weak interaction is governed by the Fermi constant
GF . The roots of GF are Fermi’s theory—based on an analogy between the
emission of an electron-neutrino pair by a radioactive nucleus and a photon
by a charged particle—of a current-current weak interaction. Of course, since
1934, our modern understanding of weak interactions has evolved to incorpo-
rate parity-violating V � A currents and the massive W and Z gauge bosons.
However, the constant GF and Fermi interaction have survived as a convenient,
low energy, e↵ective theory of the weak sector in the standard model (and pre-
sumably any successor).

Within the standard model the Fermi constant (see Fig. 1) is given by

GF
p
2
=

g
2

8M2
W

 
1 +

X

i

ri

!
(1)

where 1/M2
W represents the tree-level propagator corresponding to W -boson

exchange and g the weak coupling. The term
P

i ri incorporates the higher-
order electroweak interaction corrections [28]. The factors of

p
2 and 8 in Eqn.

1 are reminders of the origins of the Fermi constant in a vector current - vector
current weak interaction.

By far the best determination of the Fermi constant is obtained by the
measurement of the positive muon lifetime, ⌧µ. Experimentally, intense beams
of low-energy muons are nowadays available and the 2.2 µs muon lifetime with
its associated decay electrons are nicely suited to precision measurements of
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Starting from one loop, all SM masses are entering 
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6 Additional comments

It would be interesting to understand if the Gµ-scheme is really incorporating the dominant
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or in general for physics at LEP this is true, but when Q is of the order of several TeV may
not be the case due to the running of ↵ that could be a larger effect. On the other hand,
let’s keep in mind that the dependence is of the order log(Q2/m2
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reality, since the electron is not the only particle entering in the running and all the others
enter in a different way between [0,mZ ] and [mZ , Q].

It is interesting to note that this running effects are taken into account when precise
predictions for the g � 2 of the muon are done. Indeed on a logarithmic scale half a way
between the me and mZ we have 2mµ ⇠

p
memZ , so it is not negligible.

Last but not least, for a generic process one cannot run just ↵ as done for the g � 2

where the only vertex at tree-level is the QED one; in general we have any SM interactions
so also the other weak parameters should run for a correct evaluation.
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Schemes recap

{α(0) , MW , MZ} → α(0) scheme

{α(MZ) , MW , MZ} → α(MZ) scheme

{Gμ , MW , MZ} → Gμ scheme

and vf , af are the vector and axialvector couplings of the Z-boson to the fermion f , given
explicitly in (A.15). This yields in fact two conditions, namely

0 = −Qf (δZe + δZf,V
ii +

1

2
δZAA) + Λf

V (0) + Λf
S(0) + vf

1

2
δZZA, (3.29)

0 = −Qf δZf,A
ii + Λf

A(0) + af
1

2
δZZA. (3.30)

The first one (3.29) for f = e fixes the charge renormalization constant. The second
(3.30) is automatically fulfilled due to a Ward identity which can be derived from the
gauge invariance of the theory. The same Ward identity moreover yields

Λf
V (0) + Λf

S(0) − QfδZ
f,V
ii + af

1

2
δZZA = 0. (3.31)

Inserting this in (3.29) we finally find (using vf − af = −QfsW/cW )

δZe = −
1

2
δZAA −

sW

cW

1

2
δZZA =

1

2

∂ΣAA
T (k2)

∂k2

∣∣∣∣∣
k2=0

−
sW

cW

ΣAZ
T (0)

M2
Z

. (3.32)

This result is independent of the fermion species, reflecting electric charge universality.
Clearly it does not depend on a specific choice of field renormalization. Consequently the
analogue of (3.17) holds for arbitrary fermions f .

In the on-shell scheme the weak mixing angle is a derived quantity. Following Sirlin
[26] we define it as

sin2 θW = s2
W = 1 −

M2
W

M2
Z

, (3.33)

using the renormalized gauge boson masses. This definition is independent of a specific
process and valid to all orders of perturbation theory.

Since the dependent parameters sW and cW frequently appear, it is useful to introduce
the corresponding counterterms

cW,0 = cW + δcW , sW,0 = sW + δsW . (3.34)

Because of (3.33) these are directly related to the counterterms to the gauge boson masses.
To one-loop order we obtain

δcW

cW
=

1

2

(
δM2

W

M2
W

−
δM2

Z

M2
Z

)

=
1

2
R̃e

(
ΣW

T (M2
W )

M2
W

−
ΣZZ

T (M2
Z)

M2
Z

)

,

δsW

sW
= −

c2
W

s2
W

δcW

cW
= −

1

2

c2
W

s2
W

R̃e

(
ΣW

T (M2
W )

M2
W

−
ΣZZ

T (M2
Z)

M2
Z

)

.

(3.35)

We have now determined all renormalization constants in terms of unrenormalized self
energies. In the next sections we will describe the methods to calculate these self energies
and more general diagrams at the one-loop level.

18

3 ↵(m2
Z
) scheme (and generalization to ↵(Q2) scheme)

As we said, one has to get rid of the mf dependence, but not via the ↵MS-scheme. The
common way is using the ↵(Q2) scheme, where typically Q = mZ and has been exploited
in the precision studies at the Z peak at LEP.

The first important point to remember is that ↵(Q2) is NOT the straightforward gener-
alization of the condition of eq. 1.1, i.e., �̂ee�

µ (p, p0) for p2 = m2
e, p02 = m2

e and (p+p0)2 = Q2.
The scheme ↵(Q2) is defined as

�Ze|↵(Q2) ⌘ �Ze|↵(0) �
1

2
�↵(Q2) (3.1)

where
�↵(Q2) ⌘ ⇧AA

f 6=t
(0)�<{⇧AA

f 6=t
(Q2)} (3.2)

where ⇧AA

f 6=t
is the contribution to the vacuum polarization induced by all fermion but the
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Some comments are in order at this point. Let’s imagine for one moment that there
is no QCD in this world and �↵(Q2) =

P
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�↵fermion(Q2,mf ). We can see combining
eqs. (1.10), (3.1) and (3.6) that in the limit Q >> mf the dependence on mf of the
�Ze|↵(Q2) counterterm disappears. On the other hand we can also see from eq. (3.7) that
if a very heavy electrically charged new BSM fermion exists, it will not affect physics at
the EW scale. Equation (3.7) is simply showing the decoupling limit of QED. We can also
explicitly relate ↵(Q2) to ↵(0)
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+ c2
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�⇢.

In conclusion the renormalization condition is defined as
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(5.11)

The �⇢ term is the leading contribution to �2 �cW
cW

, as can be inferred comparing
eqs. (5.3) and (5.6). Every time we have a W interaction with a quark the coupling is
g = e/sW , so we can see that

�g =
e

sW
�Ze �

e

sW

�sW
sw

= g(�Ze �
�sW
sw

) = g(�Ze +
cW
s2
W

�cW ) ⇠ g(�Ze �
1

2

c2
W

s2
W

�⇢) (5.12)

that is if �Ze is in the Gµ-scheme (eq. (5.11)) the finite effect induced by the �sW coun-
terterm is canceled by the renormalization condition for the charge. We used the relations
cw�cw = �sw�sw and �cw ⇠ �

1
2cw�⇢ in the steps.

Another way to see this: every g2 = ↵/s2
W

term in the cross-section receives corrections
to s2

W
from

s2W + �s2W ⇠ s2W + c2W �⇢ (5.13)

which are then canceled by �Ze|Gµ .

6 Additional comments

It would be interesting to understand if the Gµ-scheme is really incorporating the dominant
corrections also for the LHC and future 100 TeV collider. For total cross sections at LHC
or in general for physics at LEP this is true, but when Q is of the order of several TeV may
not be the case due to the running of ↵ that could be a larger effect. On the other hand,
let’s keep in mind that the dependence is of the order log(Q2/m2

Z
). In order to have Q that

gives the same shift given by log(m2
Z
/m2

e), the contribution of the electron to the running
from ↵(0) to ↵(m2

Z
), we need Q ⇠ 1.6⇥ 104 TeV. This crude estimate may variate a lot in

reality, since the electron is not the only particle entering in the running and all the others
enter in a different way between [0,mZ ] and [mZ , Q].

It is interesting to note that this running effects are taken into account when precise
predictions for the g � 2 of the muon are done. Indeed on a logarithmic scale half a way
between the me and mZ we have 2mµ ⇠

p
memZ , so it is not negligible.

Last but not least, for a generic process one cannot run just ↵ as done for the g � 2

where the only vertex at tree-level is the QED one; in general we have any SM interactions
so also the other weak parameters should run for a correct evaluation.
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α(0) ∼ 1/137 α(MZ) ∼ 1/128 α |Gμ
∼ 1/132

As a rule of thumb, for a generic process at the LHC, the Gmu scheme is 
superior and has to be preferred. However, if a photon is present in the Born 
final-state, alpha(0) and the corresponding renormalisation should be used for  
the associated QED vertex.
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Do you remember that 
in QCD: 

NLO   %(α3
s )    

   
qq̄ → tt̄ : 2ℜ(ℳtreeℳ*1−loop)
gg → tt̄ : 2ℜ(ℳtreeℳ*1−loop) }


V
irtual 

it can be more complex: 
NLO EW and Complete-NLO 
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Structure of NLO EW-QCD corrections
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3 _s_
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LO 

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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– 4 –

tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply

– 8 –

as example
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Structure of NLO EW-QCD corrections
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Scale (for NLO QCD) and PDF uncertainties are also shown.
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butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones
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tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This
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We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the
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Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.

– 7 –

Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.

– 7 –

tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply
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tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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EW
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Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q "= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α % αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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tt̄H : σ( pb) 8 TeV 13 TeV 100 TeV

LO QCD 9.685 · 10−2 3.617 · 10−1 (1.338 · 10−2) 23.57

NLO QCD 2.507 · 10−2 1.073 · 10−1 (3.230 · 10−3) 9.61

LO EW 1.719 · 10−3 4.437 · 10−3 (3.758 · 10−4) 1.123 · 10−2

LO EW no γ −2.652 · 10−4 −1.390 · 10−3 (−2.452 · 10−5) −1.356 · 10−1

NLO EW −5.367 · 10−4 −4.408 · 10−3 (−1.097 · 10−3) −6.261 · 10−1

NLO EW no γ −7.039 · 10−4 −4.919 · 10−3 (−1.131 · 10−3) −6.367 · 10−1

HBR 8.529 · 10−4 3.216 · 10−3 (2.496 · 10−4) 2.154 · 10−1

Table 3: Contributions, as defined in table 1, to the total rate (in pb) of tt̄H production,

for three different collider energies. The results in parentheses are relevant to the boosted

scenario, eq. (3.1).

tt̄H : δ(%) 8 TeV 13 TeV 100 TeV

NLO QCD 25.9+5.4
−11.1 29.7+6.8

−11.1 (24.2+4.8
−10.6) 40.8+9.3

−9.1

LO EW 1.8 ± 1.3 1.2 ± 0.9 (2.8 ± 2.0) 0.0± 0.2

LO EW no γ −0.3± 0.0 −0.4± 0.0 (−0.2 ± 0.0) −0.6± 0.0

NLO EW −0.6± 0.1 −1.2± 0.1 (−8.2 ± 0.3) −2.7± 0.0

NLO EW no γ −0.7± 0.0 −1.4± 0.0 (−8.5 ± 0.2) −2.7± 0.0

HBR 0.88 0.89 (1.87) 0.91

Table 4: Same as in table 3, but given as fractions of corresponding LO QCD cross sections.

Scale (for NLO QCD) and PDF uncertainties are also shown.

or boosted regime), where it is predominantly of LO-type because of the growing contri-

butions of qg-initiated partonic processes. In all cases, the PDF uncertainties on the NLO

QCD term are smaller, and decrease with the c.m. energy. Secondly, the contributions

due to processes with initial-state photons are quite large at the LO (except for tt̄W±

production, which has a LO EW cross section identically equal to zero), but consistitute

only a small fraction of the total at the NLO. This is due to the fact that LO EW processes

proceed only through two types of initial state, namely γg and bb̄, whereas NLO EW ones

have richer incoming-parton luminosities. Thirdly, as a consequence of the previous point,

the uncertainty of the photon density only marginally increases (if at all) the total PDF

uncertainty that affects the NLO EW term, while it constitute a dominant factor at the

LO EW level (for tt̄H and tt̄Z).

Other aspects characterise differently the four tt̄V processes. The relative importance

of NLO EW contributions w.r.t. the NLO QCD ones increases with energy in the cases

of tt̄H and tt̄Z production, while it decreases for tt̄W± production. At the 8-TeV LHC,

NLO EW terms have the largest impact on tt̄W+ (about 17% of the NLO QCD ones), and

the smallest on tt̄H (2.7%). This is reflected in the fact that for tt̄W± production, while

the NLO EW effects are within the NLO QCD scale uncertainty band, they are almost

marginally so. Conversely, for tt̄H and tt̄Z production NLO EW contributions are amply
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LO,1 LO,2 LO,3 

NLO,1 NLO,2 NLO,3 NLO,4 

NLO,1 = NLO QCD 
NLO,2 = NLO EW 

We can denote the complete set of LO,i and NLO,i as 
“Complete NLO”. 

In general, NLO,3 and NLO,4 sizes are negligible, 
but there are exceptions. 
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Complications for IR divergencies (let’s forget about H)

At NLO QCD, IR divergencies in the loops are canceled by corresponding 
gluon real emissions. At NLO EW we have also emissions of photons, but also 
the double structure we have shown before. So what happens? 
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
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QCD there are two different color structures and the result depends on d2 = dABCdABC = 40
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that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Complications for IR divergencies (let’s forget about H)

At NLO QCD, IR divergencies in the loops are canceled by corresponding 
gluon real emissions. At NLO EW we have also emissions of photons, but also 
the double structure we have shown before. So what happens? 

SHORT DIGRESSION 

This discussions concern the QED part of the NLO EW corrections. NLO EW 
can be divided into a QED part (photonic emission or loop corrections from 
fermions) and a purely Weak part (all the rest, including vacuum polarisations). 
However this separation is not in general gauge-invariant! 
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄
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QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40
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that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Complications for IR divergencies (let’s forget about H)

Photons and gluons at the same time 
leads to more diagrams and more IR 
divergencies! 

Radiation of photons and gluons 
have both to be considered for 
obtaining IR finiteness at NLO EW. 
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be an overall factor three, which comes from the three different replacements of the gluon propagator
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QCD there are two different color structures and the result depends on d2 = dABCdABC = 40
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that arises from Tr(tAtBtC) = 1
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ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Complications for IR divergencies (let’s forget about H)

Photons and gluons at the same time 
leads to more diagrams and more IR 
divergencies! 

The situation is simpler for collinear 
radiation … unless jets and photons in the 
Born final state are considered. 
Jet and photon definitions at NLO EW 
deserve too many slides for today ..



Automation of EW 
corrections in 

MadGraph5_aMC@NLO 
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Automation of NLO corrections in Madgraph5_aMC@NLO

What do we mean with automation of EW corrections?

generate process [QCD] 
output process_QCD 

generate process [QCD EW] 
output process_QCD_EW 

The possibility of calculating QCD and EW corrections for SM processes 
(matched to shower effects) with a process-independent approach.

110

again: 
 you need to know what’s going on in order to understand the 

results

Recently, also the case of   collisions has become 
available!

e+e−

Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao  ’22 



Results: NLO EW

set complex mass scheme true  
import model loop_qcd_qed_sm_Gmu  
generate process [QED] 
output process_NLO_EW_corrections 

And then wait for the results ………….. 

just type: 

111

CMS is necessary every time a resonance is present 
in the calculation (Z, W, top, …)
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Results: NLO EW

JHEP07(2018)185

Process Syntax Cross section (in pb) Correction (in %)

LO NLO

pp → e+νe p p > e+ ve QCD=0 QED=2 [QED] 5.2498 ± 0.0005 · 103 5.2113 ± 0.0006 · 103 −0.73 ± 0.01

pp → e+νej p p > e+ ve j QCD=1 QED=2 [QED] 9.1468 ± 0.0012 · 102 9.0449 ± 0.0014 · 102 −1.11 ± 0.02

pp → e+νejj p p > e+ ve j j QCD=2 QED=2 [QED] 3.1562 ± 0.0003 · 102 3.0985 ± 0.0005 · 102 −1.83 ± 0.02

pp → e+e− p p > e+ e- QCD=0 QED=2 [QED] 7.5367 ± 0.0008 · 102 7.4997 ± 0.0010 · 102 −0.49 ± 0.02

pp → e+e−j p p > e+ e- j QCD=1 QED=2 [QED] 1.5059 ± 0.0001 · 102 1.4909 ± 0.0002 · 102 −1.00 ± 0.02

pp → e+e−jj p p > e+ e- j j QCD=2 QED=2 [QED] 5.1424 ± 0.0004 · 101 5.0410 ± 0.0007 · 101 −1.97 ± 0.02

pp → e+e−µ+µ− p p > e+ e- mu+ mu- QCD=0 QED=4 [QED] 1.2750 ± 0.0000 · 10−2 1.2083 ± 0.0001 · 10−2 −5.23 ± 0.01

pp → e+νeµ−ν̄µ p p > e+ ve mu- vm~ QCD=0 QED=4 [QED] 5.1144 ± 0.0007 · 10−1 5.3019 ± 0.0009 · 10−1 +3.67 ± 0.02

pp → He+νe p p > h e+ ve QCD=0 QED=3 [QED] 6.7643 ± 0.0001 · 10−2 6.4914 ± 0.0012 · 10−2 −4.03 ± 0.02

pp → He+e− p p > h e+ e- QCD=0 QED=3 [QED] 1.4554 ± 0.0001 · 10−2 1.3700 ± 0.0002 · 10−2 −5.87 ± 0.02

pp → Hjj p p > h j j QCD=0 QED=3 [QED] 2.8268 ± 0.0002 · 100 2.7075 ± 0.0003 · 100 −4.22 ± 0.01

pp → W+W−W+ p p > w+ w- w+ QCD=0 QED=3 [QED] 8.2874 ± 0.0004 · 10−2 8.8017 ± 0.0012 · 10−2 +6.21 ± 0.02

pp → ZZW+ p p > z z w+ QCD=0 QED=3 [QED] 1.9874 ± 0.0001 · 10−2 2.0189 ± 0.0003 · 10−2 +1.58 ± 0.02

pp → ZZZ p p > z z z QCD=0 QED=3 [QED] 1.0761 ± 0.0001 · 10−2 0.9741 ± 0.0001 · 10−2 −9.47 ± 0.02

pp → HZZ p p > h z z QCD=0 QED=3 [QED] 2.1005 ± 0.0003 · 10−3 1.9155 ± 0.0003 · 10−3 −8.81 ± 0.02

pp → HZW+ p p > h z w+ QCD=0 QED=3 [QED] 2.4408 ± 0.0000 · 10−3 2.4809 ± 0.0005 · 10−3 +1.64 ± 0.02

pp → HHW+ p p > h h w+ QCD=0 QED=3 [QED] 2.7827 ± 0.0001 · 10−4 2.4259 ± 0.0027 · 10−4 −12.82 ± 0.10

pp → HHZ p p > h h z QCD=0 QED=3 [QED] 2.6914 ± 0.0003 · 10−4 2.3926 ± 0.0003 · 10−4 −11.10 ± 0.02

pp → tt̄W+ p p > t t~ w+ QCD=2 QED=1 [QED] 2.4119 ± 0.0003 · 10−1 2.3025 ± 0.0003 · 10−1 −4.54 ± 0.02

pp → tt̄Z p p > t t~ z QCD=2 QED=1 [QED] 5.0456 ± 0.0006 · 10−1 5.0033 ± 0.0007 · 10−1 −0.84 ± 0.02

pp → tt̄H p p > t t~ h QCD=2 QED=1 [QED] 3.4480 ± 0.0004 · 10−1 3.5102 ± 0.0005 · 10−1 +1.81 ± 0.02

pp → tt̄j p p > t t j QCD=3 QED=0 [QED] 3.0277 ± 0.0003 · 102 2.9683 ± 0.0004 · 102 −1.96 ± 0.02

pp → jjj p p > j j j QCD=3 QED=0 [QED] 7.9639 ± 0.0010 · 106 7.9472 ± 0.0011 · 106 −0.21 ± 0.02

pp → tj p p > t j QCD=0 QED=2 [QED] 1.0613 ± 0.0001 · 102 1.0539 ± 0.0001 · 102 −0.70 ± 0.02

Table 2. Processes considered in section 6.2. The second column reports the MG5 aMC syntax used to generate them. The third and fourth
columns display the fully-inclusive results for the quantities defined in eq. (6.12). The fifth column shows the results for the fractional correction
defined in eq. (6.14). All uncertainties are due to MC integration errors.
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to achieve a given accuracy — more details on this item can be found in section 2.4.3 of

ref. [17]. The overall runtime to compute all of the results presented in this section is a

couple of weeks on O(200) CPUs.

As was mentioned in section 2, MadLoop can choose dynamically which integral-

reduction module to employ; this is done in an order that is pre-defined by the user. In

the current MG5 aMC version, the default order is the following. One starts with double-

precision arithmetic, and Ninja is used first. If the internal numerical stability tests are not

passed (see section 2.4.2 of ref. [17]), Collier is used instead. If that also fails to provide

a stable result, CutTools is finally adopted. Yet another unstable result entails the use

of quadruple-precision computations, which are available in both Ninja and CutTools

(called again by MadLoop in this order, if necessary). The Ninja and CutTools integral-

reduction modules obtain the scalar integrals from OneLoop [114]. For the processes

considered in this paper, we have found that, with the accuracy as specified above, an

overall (i.e. relevant to all of the processes combined) negligible amount of O(100) phase-

space points have required quadruple-precision calculations, all of which were then deemed

to be numerically stable.

6.2 NLO EW corrections

In this section we present the leading LO and second-leading NLO (i.e. NLO EW) results

for a variety of processes, whose complete list can be found in the first column of table 2.

The second column of that table reports instead the MG5 aMC commands used to generate

those processes. These adhere to the general syntax reported in section 2; note in particular

the keywords34 that determine which coupling-constant combinations are considered in the

calculations, according to eqs. (2.8) and (2.9).

We start by looking at fully-inclusive rates, obtained with the conditions and accep-

tance cuts given in section 6.1. The third and fourth columns in table 2 report the LO

and NLO results, defined according to eq. (6.12). The fifth column displays instead the

fractional correction (given in percent) due to NLO EW effects, i.e.:

δEW =
ΣNLO2

ΣLO1

=
NLO

LO
− 1 . (6.14)

As was anticipated in section 6.1, all of the uncertainties reported in the three rightmost

columns in table 2 are MC integration errors; as one can see, in absolute value they are

almost always well below the per-mille level.35

Table 2 confirms the well-known fact that NLO EW effects to fairly inclusive observ-

ables are mostly negative, and rather small in absolute value (a few percent). Several

34The keyword [QED] is conventional, and it implies that both electromagnetic and weak effects (i.e. the

complete O(α) corrections) are taken into account, since both are included in the loop qcd qed sm Gmu

model. Restrictions to the QED-only or weak-only cases can be achieved by adopting a simpler theory

model (for those processes for which these restrictions are meaningful).
35The largest fractional error (still a mere 1.1 ·10−3 on the NLO cross section) affects HHW+ production.

We have checked that this is dominated by the opening at the NLO of a new t-channel configuration where

an initial-state photon couples directly to the W+. This channel is not mapped ideally by our phase-space

parametrisation.
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to achieve a given accuracy — more details on this item can be found in section 2.4.3 of

ref. [17]. The overall runtime to compute all of the results presented in this section is a

couple of weeks on O(200) CPUs.

As was mentioned in section 2, MadLoop can choose dynamically which integral-

reduction module to employ; this is done in an order that is pre-defined by the user. In

the current MG5 aMC version, the default order is the following. One starts with double-

precision arithmetic, and Ninja is used first. If the internal numerical stability tests are not

passed (see section 2.4.2 of ref. [17]), Collier is used instead. If that also fails to provide

a stable result, CutTools is finally adopted. Yet another unstable result entails the use

of quadruple-precision computations, which are available in both Ninja and CutTools

(called again by MadLoop in this order, if necessary). The Ninja and CutTools integral-

reduction modules obtain the scalar integrals from OneLoop [114]. For the processes

considered in this paper, we have found that, with the accuracy as specified above, an

overall (i.e. relevant to all of the processes combined) negligible amount of O(100) phase-

space points have required quadruple-precision calculations, all of which were then deemed

to be numerically stable.

6.2 NLO EW corrections

In this section we present the leading LO and second-leading NLO (i.e. NLO EW) results

for a variety of processes, whose complete list can be found in the first column of table 2.

The second column of that table reports instead the MG5 aMC commands used to generate

those processes. These adhere to the general syntax reported in section 2; note in particular

the keywords34 that determine which coupling-constant combinations are considered in the

calculations, according to eqs. (2.8) and (2.9).

We start by looking at fully-inclusive rates, obtained with the conditions and accep-

tance cuts given in section 6.1. The third and fourth columns in table 2 report the LO

and NLO results, defined according to eq. (6.12). The fifth column displays instead the

fractional correction (given in percent) due to NLO EW effects, i.e.:

δEW =
ΣNLO2

ΣLO1

=
NLO

LO
− 1 . (6.14)

As was anticipated in section 6.1, all of the uncertainties reported in the three rightmost

columns in table 2 are MC integration errors; as one can see, in absolute value they are

almost always well below the per-mille level.35

Table 2 confirms the well-known fact that NLO EW effects to fairly inclusive observ-

ables are mostly negative, and rather small in absolute value (a few percent). Several

34The keyword [QED] is conventional, and it implies that both electromagnetic and weak effects (i.e. the

complete O(α) corrections) are taken into account, since both are included in the loop qcd qed sm Gmu

model. Restrictions to the QED-only or weak-only cases can be achieved by adopting a simpler theory

model (for those processes for which these restrictions are meaningful).
35The largest fractional error (still a mere 1.1 ·10−3 on the NLO cross section) affects HHW+ production.

We have checked that this is dominated by the opening at the NLO of a new t-channel configuration where

an initial-state photon couples directly to the W+. This channel is not mapped ideally by our phase-space

parametrisation.
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Figure 8. Transverse momentum of the hardest vector boson in the processes of eq. (6.19) (left
panel), and transverse momentum of the Higgs boson in the processes of eq. (6.20) (right panel).
Some of the histograms in the main frames are rescaled as indicated in order to enhance their
visibility.

since it receives contributions from real-emission diagrams with an s-channel top quark

(i.e. from an underlying t∗W−Z or t̄∗W+Z production mechanism). Thus, while tech-

nically this process is doable in our setup by setting the top width equal to its physical

value in order to prevent the matrix elements from diverging on the top resonance (see

section 5.5), potentially it still poses the problems common to all processes which, at the

NLO, “interfere” with a top-induced “background” (such as instabilities in the numerical

integration caused by extremely large K factors). We have already discussed an example

(W+∗W−∗ production, eq. (6.17)) where such an interference in practice does not lead to

any issues at the perturbative orders we are interested in. However, the case of ZW−W+

production is much more involved, and therefore we prefer to postpone its study to when

MG5 aMC will feature an automated treatment of the subtraction or removal of resonant

contributions, with procedures analogous to those already considered in the literature in

different contexts.41 Another, simpler, solution is that of performing the computation in a

scheme with four flavours. This will not be done here, but it is feasible with the present

version of MG5 aMC (we note that a 4FS restriction of the OS model is available, while

its CM counterpart has still to be constructed).42

From the inset in left panel of figure 8, we see that ZZZ production exhibits the

typical behaviour of NLO EW corrections, which are small at small transverse momentum,

and grow in absolute value with pT . The other two processes in eq. (6.19) display a more

intricate behaviour, owing to a combination of effects: the virtual Sudakov corrections,

which decrease the rates; and the positive enhancement of the cross section, due to the

41The procedures that are being implemented in MG5 aMC are fully local in the phase-space of final-

state particles, such as those of refs. [145–153]. Global [134, 154–156] or semi-local [157–160] approaches

are not suited to automated observable-independent short-distance computations.
42Another possibility in the context of a five-flavour computation is that of adding a dedicated integration

channel for each of the new resonant contributions that open at the NLO level.
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Figure 7. Transverse momentum of the hardest same-flavour dressed-lepton pair in the processes of
eq. (6.17) (left panel), and Higgs transverse momentum in the processes of eq. (6.18) (right panel).

We have chosen the two processes in eq. (6.17) in order to be definite, as representatives of

the class of reactions with four final-state leptons; both have been studied before [26, 27,

30, 35, 130, 131]. In fact, without any additional complications, MG5 aMC is able to deal

with any process that belongs to this class, regardless of the particular flavour and charge

combinations.

In detail, the definitions of the pT (ll) (relevant to pp → e+e−µ+µ−) and pT (lν) (relevant

to pp → e+νeµ−ν̄µ) observables are the following. For the former, one uses dressed leptons;

the e+e− and µ+µ− pairs transverse momenta are then computed, and the largest of the

two is set equal to pT (ll). In the latter case, charged leptons are again dressed first; then,

the transverse momenta of the e+νe and µ−ν̄µ pairs are computed (by using the MC truth

information to find the neutrinos), and the largest of the two is set equal to pT (lν). The

NLO EW corrections behave rather differently for the two processes. While for the four

charged lepton process they display the typical Sudakov behaviour at high pT , for the other

process the corrections are positive and growing for pT ! 40 GeV, starting to decrease only

towards pT " 400 GeV. We point out that the two processes have significant differences in

their underlying mechanisms. Firstly, although both 2l2ν and 4l production are dominated

by di-boson resonant contributions (namely, di-W and di-Z, respectively), it is only the

former case that features diagrams with t-channel spin-one exchanges (thus enhanced at

large momentum transfers). These appear in γγ-initiated processes, owing to the direct

γW+W− coupling. Secondly, partonic processes such as γq → W+∗W−∗q′ that give rise

to 2l2ν final states may be enhanced at large lepton-pair pT ’s owing to quasi-collinear

q∗ → W ∗q′ splittings (see e.g. ref. [121]). While a similar mechanism also occurs in 4l

production, in that case its effects are balanced by a stronger suppression than in the

case of 2l2ν production.39 Finally, at the NLO 2l2ν production features a real-emission

contribution due to an underlying tW doubly-resonant mechanism, which might induce very

39The overall impact of quasi-collinear enhancements on observable cross sections ultimately depends on

the interplay between their kinematics characteristics, the partonic matrix elements, and PDF effects —

see e.g. refs. [132, 133] for discussions on this point.
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Results: Complete NLO 

set complex mass scheme true  
import model loop_qcd_qed_sm_Gmu 
generate process QCD=99 QED=99 [QCD QED] 
output process_NLO_EW_corrections 

And then wait for the results ………….. 

just type: 
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Results: Complete NLO 
JHEP07(2018)185

pp→ tt̄ pp→ tt̄Z pp→ tt̄W+ pp→ tt̄H pp→ tt̄j

LO1 4.3803±0.0005 ·102 pb 5.0463±0.0003 ·10−1 pb 2.4116±0.0001 ·10−1 pb 3.4483±0.0003 ·10−1 pb 3.0278±0.0003 ·102 pb

LO2 +0.405± 0.001 % −0.691± 0.001 % +0.000± 0.000 % +0.406± 0.001 % +0.525± 0.001 %

LO3 +0.630± 0.001 % +2.259± 0.001 % +0.962± 0.000 % +0.702± 0.001 % +1.208± 0.001 %

LO4 +0.006± 0.000 %

NLO1 +46.164± 0.022 % +44.809± 0.028 % +49.504± 0.015 % +28.847± 0.020 % +26.571± 0.063 %

NLO2 −1.075± 0.003 % −0.846± 0.004 % −4.541± 0.003 % +1.794± 0.005 % −1.971± 0.022 %

NLO3 +0.552± 0.002 % +0.845± 0.003 % +12.242± 0.014 % +0.483± 0.008 % +0.292± 0.007 %

NLO4 +0.005± 0.000 % −0.082± 0.000 % +0.017± 0.003 % +0.044± 0.000 % +0.009± 0.000 %

NLO5 +0.005± 0.000 %

Table 3. Cross sections for the five tt̄+X processes of eqs. (6.23) and (6.24), resulting from the setup described in section 6.1. The uncertainties
quoted are of statistical nature only, originating from the Monte Carlo integration over the phase space. The subleading LO and NLO contributions
are given as percentage fractions of LO1.
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or an extra light jet:

pp −→ tt̄j . (6.24)

Since we consider all of the LO and NLO contributions, eqs. (6.2) and (6.3), we have

generated these processes in MG5 aMC by using the following commands:

MG5 aMC> generate p p > t t~ QED=2 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ z QED=3 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ w+ QED=3 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ h QED=3 QCD=2 [QCD QED]

MG5 aMC> generate p p > t t~ j QED=3 QCD=3 [QCD QED]

The syntax of these commands has already been discussed in section 2. We point out

that in the case of tt̄j production at these perturbative orders massless leptons must also

be included in the definition of both the p and j multiparticles, in keeping with what is

explained in appendix D. This can be done by executing the following commands:

MG5 aMC> define p = p e+ e- mu+ mu- ta+ ta-

MG5 aMC> define j = p

immediately after the p and j definitions given at the beginning of section 6.1, and before

the process-generation command. The computation of tt̄W− production would not pose

any additional problem w.r.t. that of pp → tt̄W+; it is not carried out here. The results for

all the LO and NLO terms have already been computed with a private version of MG5 aMC

for the pp → tt̄ and pp → tt̄W+ processes, and presented in refs. [39, 40], respectively (in the

latter paper, predictions for pp → tt̄tt̄ are reported as well). Recently, the NLO corrections

to tt̄j production, bar for photon-induced processes, have been computed in ref. [41]. The

complete NLO corrections for pp → tt̄Z and pp → tt̄H are given here for the first time.

We start by considering total rates, which we report in table 3. The first row displays

the LO1 contributions to the cross sections, given in pb. Rows 2–9 present instead all of

the other contributions, as fractions over the LO1 one, namely:

ΣLOi

ΣLO1

, i = 2, 3, 4 , (6.25)

ΣNLOi

ΣLO1

, i = 1, . . . 5 ; (6.26)

note that ΣLO4 and ΣNLO5 are identically equal to zero for all processes bar that of

eq. (6.24). As for all the results shown so far, the uncertainties are solely associated with

MC integration errors. We point out that the predictions of table 3 have been generated

independently from those reported in section 6.2 (see in particular table 2 and figure 9),

and are therefore slightly different from the latter (while being statistically compatible with

them) — see the discussion immediately before eq. (6.12). As expected, for fully inclusive

rates all contributions apart from the LO1 and NLO1 ones are small, with the exception

of the NLO3 term (and, to a smaller extent, of the NLO2 one as well) in tt̄W+ production

— this constitutes a +12% correction of the LO1 cross section, and can be understood as

due to the opening of a tW scattering process, as was already suggested in refs. [40, 166].
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for tt̄W
± in [8, 12–14] and for tt̄tt̄ in [15]. In the case of tt̄H both NLO QCD [16–19]

and (Electro)Weak [20, 21] corrections have already been calculated, the former have been
also matched to parton showers [22, 23]. Our results are in agreement with those in the
literature.[TS: We have checked the tt̄tt̄ and tt�� papers. Should we check also others? ]
[Davide: We could do some check for tt̄H, tt̄�, tt̄Z, for tt̄W

± you already checked in the
other article]

In section 2 we also show the dependence of the total cross sections and of global K-
factors for tt̄V V - and tt̄V -type processes and tt̄tt̄ production on the total energy of the
proton–proton system, by varying it from 8 to 100 TeV.

In section 3.1 we present an analysis at NLO accuracy, based on [6], for the searches of
tt̄H production with the Higgs boson subsequently decaying into photons. We implement
in our analyses the cuts [TS: Not exaclty their cuts..] and the definition of the signal region
of [6] [TS: They have two signal regions for the photons. Maybe we should say the leptonic
signal region]. We provide the corresponding results at 13 TeV including NLO corrections
properly matched to parton shower effects via the procedure explained in [24], which is
part of the MadGraph5_aMC@NLO framework. We shower events with Pythia8 [25] and
cluster partons into jets via FastJet [26] using the same parameters of [6]. For the signal
and background processes tt̄��, we compare LO, NLO results and LO predictions rescaled
by a global flat K-factor for production only, as obtained in section 2. We discuss the range
of validity and the limitations of the last approximation, which is typically employed in the
experimental analyses.

In section 3.2 we present an analysis at NLO accuracy for the searches of tt̄H production
with the Higgs boson subsequently decaying into leptons, on the same lines of section 3.1.
In this case, different signal regions and exclusive final states are considered, and they can
in general receive a contribution from tt̄tt̄ production and from all the tt̄V - and tt̄V V -type
processes with the exception of tt̄��. Also here, we compare LO, NLO results and LO
predictions rescaled by a global flat K-factor for production only.

In section 4 we give our conclusions an outlooks.

2 Fixed-order corrections at the production level

In this section we describe the effects from fixed-order NLO QCD corrections at the pro-
duction level for tt̄V -type processes and tt̄H production (subsection 2.1), for tt̄V V -type
processes (subsection 2.2) and then for tt̄tt̄ production (subsection 2.3). In these subsec-
tions, all the results are shown for 13 TeV collisions at the LHC, in subsection 2.4 we provide
total cross sections and global K-factors for proton–proton collision energies from 8 to 100
TeV. With the exception of tt̄��, as already said, detailed studies at NLO for tt̄V V -type
processes are presented for the first time here. The other processes have already been in-
vestigated in previous works, whose references are listed in section 1. Here, we (re-)perform
all these calculations within the same framework, MadGraph5_aMC@NLO, and using a
consistent set of input parameters. Moreover, we investigate aspects that have been only
partially studied in previous works, such as the dependence on (the definition of) the fac-
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Complete-NLO

The structure of the paper is the following. In sec. 2 we describe the calculations and
we introduce a more suitable notation for referring to the various O(↵i

s↵
j) contributions. In

sec. 3 we provide numerical results at the inclusive and differential levels for complete-NLO
predictions for proton–proton collisions at 13 and 100 TeV. We discuss in detail the impact
of the individual O(↵i

s↵
j) contributions. The common input parameters are described

in sec. 3.1, while pp ! tt̄W± and pp ! tt̄tt̄ results are described in secs. 3.2 and 3.3,
respectively. Conclusions are given in sec. 4.

2 Calculation framework for tt̄W±
and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of ↵s and ↵, a generic observable for the processes
pp ! tt̄W±(+X) and pp ! tt̄tt̄(+X) can be expressed as

⌃tt̄W
±
(↵s,↵) =

X

m+n�2

↵m

s ↵n+1⌃tt̄W
±

m+n+1,n , (2.1)

⌃tt̄tt̄(↵s,↵) =
X

m+n�4

↵m

s ↵n⌃tt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation
introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of ⌃tt̄W

±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are
given by the terms with m + n = 3 and are induced by the interference of diagrams from
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ogously, for tt̄tt̄ production, LO contributions consist of ⌃tt̄tt̄

m+n,n terms with m + n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate
all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for
⌃tt̄W

±
(↵s,↵) and m+ n = 4, 5 for ⌃tt̄tt̄(↵s,↵).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the
different ⌃tt̄W

±
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and ⌃tt̄tt̄
m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as ⌃tt̄W
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LO
and ⌃tt̄tt̄

LO
and further redefine the perturbative orders entering

these two quantities as
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Figure 2. Representative diagrams for the q̄g ! tt̄W±q̄0 real-emission amplitudes. The left
diagram is of O(↵3/2

s ↵1/2) and leads to log2(p2T (tt̄)/m
2

W ) terms in the NLO1 contribution. The
right one is of O(↵1/2

s ↵3/2), involves the tW ! tW scattering and contributes to the NLO3.

In the following we will use the symbols ⌃(N)LOi
or interchangeably their shortened

aliases (N)LO
i
for referring to the different perturbative orders. Clearly the ⌃(N)LOi

terms
in tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are
different quantities. One should bear in mind that, usually, with the term “LO” one refers
only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD
accuracy is ⌃LO1

+⌃NLO1
, which we will also denote as LOQCD +NLOQCD. The so-called

NLO EW corrections which are of O(↵) w.r.t. the LO1, are the ⌃NLO2
terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LO
i
notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction
at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also
denoted as “LO +NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is
in turn composed by tt̄W+ and tt̄W� production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W�)production, tree-level diagrams originate only from ud̄(ūd) initial states
(u and d denote generic up- and down-type quarks), where a W+(W�) is radiated from the
u(d) quark and the tt̄ pair is produced either via a gluon or a photon/Z boson (see Fig. 1).
The former class of diagrams leads to the LO1 via squared amplitude, the latter to LO3.
The interference between these two classes of diagrams is absent due to colour, thus LO2

is analytically zero. Conversely, all the NLOi contributions are non-vanishing.
The NLO1 is in general large, it has been calculated in refs. [10, 35–37] and studied
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The structure of the paper is the following. In sec. 2 we describe the calculations and
we introduce a more suitable notation for referring to the various O(↵i

s↵
j) contributions. In

sec. 3 we provide numerical results at the inclusive and differential levels for complete-NLO
predictions for proton–proton collisions at 13 and 100 TeV. We discuss in detail the impact
of the individual O(↵i

s↵
j) contributions. The common input parameters are described

in sec. 3.1, while pp ! tt̄W± and pp ! tt̄tt̄ results are described in secs. 3.2 and 3.3,
respectively. Conclusions are given in sec. 4.

2 Calculation framework for tt̄W±
and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of ↵s and ↵, a generic observable for the processes
pp ! tt̄W±(+X) and pp ! tt̄tt̄(+X) can be expressed as

⌃tt̄W
±
(↵s,↵) =

X

m+n�2

↵m

s ↵n+1⌃tt̄W
±

m+n+1,n , (2.1)

⌃tt̄tt̄(↵s,↵) =
X

m+n�4

↵m

s ↵n⌃tt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation
introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of ⌃tt̄W

±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are
given by the terms with m + n = 3 and are induced by the interference of diagrams from
the all the possible Born-level and one-loop amplitudes as well all the possible interferences
among tree-level diagrams involving one additional quark, gluon or photon emission. Anal-
ogously, for tt̄tt̄ production, LO contributions consist of ⌃tt̄tt̄

m+n,n terms with m + n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate
all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for
⌃tt̄W

±
(↵s,↵) and m+ n = 4, 5 for ⌃tt̄tt̄(↵s,↵).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the
different ⌃tt̄W

±
m+n+1,n

and ⌃tt̄tt̄
m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as ⌃tt̄W
±

LO
and ⌃tt̄tt̄

LO
and further redefine the perturbative orders entering

these two quantities as

⌃tt̄W
±

LO (↵s,↵) = ↵2

s↵⌃
tt̄W

±
3,0 + ↵s↵⌃

tt̄W
±

3,1 + ↵2⌃tt̄W
±

3,2

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
, (2.3)

⌃tt̄tt̄

LO(↵s,↵) = ↵4

s⌃
tt̄tt̄

4,0 + ↵3

s↵⌃
tt̄tt̄

4,1 + ↵2

s↵
2⌃tt̄tt̄

4,2 + ↵3

s↵⌃
tt̄tt̄

4,3 + ↵4⌃tt̄tt̄

4,4

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
+ ⌃LO4

+ ⌃LO5
. (2.4)

In a similar fashion the NLO corrections and their single perturbative orders can be defined
as

⌃tt̄W
±

NLO (↵s,↵) = ↵3

s↵⌃
tt̄W

±
4,0 + ↵2

s↵
2⌃tt̄W

±
4,1 + ↵s↵

3⌃tt̄W
±

4,2 + ↵4⌃tt̄W
±

4,3

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

, (2.5)

⌃tt̄tt̄

NLO(↵s,↵) = ↵5

s⌃
tt̄tt̄

5,0 + ↵4

s↵
1⌃tt̄tt̄

5,1 + ↵3

s↵
2⌃tt̄tt̄

5,2 + ↵2

s↵
3⌃tt̄tt̄

5,3 + ↵1

s↵
4⌃tt̄tt̄

5,4 + ↵5⌃tt̄tt̄

5,5

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

+ ⌃NLO5
+ ⌃NLO6

. (2.6)
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s ↵1/2) and leads to log2(p2T (tt̄)/m
2

W ) terms in the NLO1 contribution. The
right one is of O(↵1/2

s ↵3/2), involves the tW ! tW scattering and contributes to the NLO3.

In the following we will use the symbols ⌃(N)LOi
or interchangeably their shortened

aliases (N)LO
i
for referring to the different perturbative orders. Clearly the ⌃(N)LOi

terms
in tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are
different quantities. One should bear in mind that, usually, with the term “LO” one refers
only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD
accuracy is ⌃LO1

+⌃NLO1
, which we will also denote as LOQCD +NLOQCD. The so-called

NLO EW corrections which are of O(↵) w.r.t. the LO1, are the ⌃NLO2
terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LO
i
notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction
at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also
denoted as “LO +NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is
in turn composed by tt̄W+ and tt̄W� production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W�)production, tree-level diagrams originate only from ud̄(ūd) initial states
(u and d denote generic up- and down-type quarks), where a W+(W�) is radiated from the
u(d) quark and the tt̄ pair is produced either via a gluon or a photon/Z boson (see Fig. 1).
The former class of diagrams leads to the LO1 via squared amplitude, the latter to LO3.
The interference between these two classes of diagrams is absent due to colour, thus LO2

is analytically zero. Conversely, all the NLOi contributions are non-vanishing.
The NLO1 is in general large, it has been calculated in refs. [10, 35–37] and studied
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or interchangeably their shortened

aliases (N)LO
i
for referring to the different perturbative orders. Clearly the ⌃(N)LOi

terms
in tt̄W± production, eqs. (2.3) and (2.5), and in tt̄tt̄ production, eqs. (2.4) and (2.6), are
different quantities. One should bear in mind that, usually, with the term “LO” one refers
only to LO1, which here we will also denote as LOQCD, while an observable at NLO QCD
accuracy is ⌃LO1

+⌃NLO1
, which we will also denote as LOQCD +NLOQCD. The so-called

NLO EW corrections which are of O(↵) w.r.t. the LO1, are the ⌃NLO2
terms, so we will also

denote it as NLOEW. Since in this article we will use the (N)LO
i
notation, the term “LO”

will refer to the sum of all the LOi contributions rather than LO1 alone. The prediction
at complete-NLO accuracy, which is the sum of all the LOi and NLOi terms, will be also
denoted as “LO +NLO”.

We now turn to the description of the structures underlying the calculation of tt̄W±

and tt̄tt̄ predictions at complete-NLO accuracy. We start with tt̄W± production, which is
in turn composed by tt̄W+ and tt̄W� production, and then we move to tt̄tt̄ production.

In tt̄W+(tt̄W�)production, tree-level diagrams originate only from ud̄(ūd) initial states
(u and d denote generic up- and down-type quarks), where a W+(W�) is radiated from the
u(d) quark and the tt̄ pair is produced either via a gluon or a photon/Z boson (see Fig. 1).
The former class of diagrams leads to the LO1 via squared amplitude, the latter to LO3.
The interference between these two classes of diagrams is absent due to colour, thus LO2

is analytically zero. Conversely, all the NLOi contributions are non-vanishing.
The NLO1 is in general large, it has been calculated in refs. [10, 35–37] and studied
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Cross sections: order by order

13 TeV 100 TeV

�[%] µ = HT /4 µ = HT /2 µ = HT

LO2 - - -
LO3 0.8 0.9 1.1

NLO1 34.8 (7.0) 50.0 (25.7) 63.4 (42.0)
NLO2 �4.4 (�4.8) �4.2 (�4.6) �4.0 (�4.4)
NLO3 11.9 (8.9) 12.2 (9.1) 12.5 (9.3)
NLO4 0.02 (�0.02) 0.04 (�0.02) 0.05 (�0.01)

Table 3. �(N)LOi
/�LOQCD ratios for tt̄W± production at 13 TeV for various values of µ = µr = µf .

i > 1 changes the cross section by about 1% and leaves also the scale dependence almost
unchanged. As discussed in sec. 2, the LO2 is exactly zero due to colour, thus this small
correction is entirely coming from the LO3 contribution. In Tabs. 3 and 4 it can be seen
that the scale dependence of this LO3 contribution is slightly different from the LO1. The
factorisation scale dependence is almost identical for the LO1 and LO3 terms (both are qq̄0

initiated and have similar kinematic dependence), thus this difference is entirely due to the
variation of the renormalisation scale, which, at leading order, only enters the running of
↵s. The LO1 has two powers of ↵s while the LO3 has none. The value of ↵s decreases with
increasing scales, and therefore, it is no surprise that �LO3

increases with larger values for
the scales.

As already known, in tt̄W± production NLO QCD corrections are large and lead to a
reduction of the scale uncertainty. Indeed, for the central scale choice, the total cross section
at 13 TeV increases by 50% when including the NLOQCD contribution, and a massive 150%
correction is present at 100 TeV. The reduction in the scale dependence is about a factor
two for 13 TeV, resulting in an 11% uncertainty. On the other hand, given the large
NLOQCD corrections, at 100 TeV the resulting scale dependence at LOQCD + NLOQCD is
larger than at 13 TeV, remaining at about 16%. Comparing these pure-QCD predictions to
the complete-NLO cross sections (LO + NLO) we see that the latter are about 6% larger
at 13 TeV, while the relative scale dependencies are identical. At 100 TeV, even though
the relative scale dependence at complete-NLO is 1-2 percentage points smaller than at
LOQCD + NLOQCD, in absolute terms it is actually larger. This effect is due to the large
increase of about 26% induced by (N)LO

i
terms with i > 1. Indeed, this increase is mostly

coming from the contribution of the tW ! tW scattering, which appears at NLO3 via the
quark real-emission and has a Born-like scale dependence. However, this dependence is
relatively small since the NLO3 involves only a single power of ↵s.

In Tabs. 3 and 4 we can see that �NLO1
⌘ �NLOQCD

is strongly µ dependent, while
this is not the case for �NLOi with i > 1. In fact, this behaviour is quite generic and not
restricted to tt̄W± production; it can be observed for a wide class of processes. The µ

dependence in �NLO1
leads to the reduction of the scale dependence of LOQCD +NLOQCD

results w.r.t. the LOQCD ones. On the contrary, the �NLOi quantities with i > 1 are
typically quite independent of the value of µ. The reason is the following. The NLOi

contributions are given by “QCD corrections” to LOi contributions as well “EW corrections”
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�[%] µ = HT /4 µ = HT /2 µ = HT

LO2 - - -
LO3 0.9 1.1 1.3

NLO1 159.5 (69.8) 149.5 (71.1) 142.7 (73.4)
NLO2 �5.8 (�6.4) �5.6 (�6.2) �5.4 (�6.1)
NLO3 67.5 (55.6) 68.8 (56.6) 70.0 (57.6)
NLO4 0.2 (0.1) 0.2 (0.2) 0.3 (0.2)

Table 4. �(N)LOi
/�LOQCD ratios for tt̄W± production at 100 TeV for various values of µ = µr = µf .

to the LOi�1 ones. The former involve explicit logarithms of µ due the renormalisation of
both ↵s and PDFs, while the latter contain only explicit logarithms of µ due the O(↵)

PDFs counterterms. Indeed, in the Gµ-scheme, or other schemes such as ↵(0) or ↵(mZ),
the numerical input for ↵ does not depend on an external renormalisation scale. Moreover,
the O(↵) PDF counterterms induce a much smaller effect than those of QCD, since they are
O(↵/↵s) suppressed and do not directly involve the gluon PDF. Thus, for a generic process,
since a LOi contribution is typically quite suppressed w.r.t. the LOi�1 one —or even absent,
as e.g. for (multi) EW vector boson production— the scale dependence of �NLOi with i > 1

is small. For this reason it is customary, and typically also reasonable, to quote NLO EW
corrections independently from the scale definition. As can be seen in Tabs. 3 and 4 this is
also correct for tt̄W±, but as we will see in the next section the situation is quite different
for tt̄tt̄ production, where also the �(N)LOi

(µ) quantities with i > 1 strongly depend on the
value of µ.

By considering the µ dependence of the �NLO1
(µ) contributions in Tabs. 3 and 4, we

see a different behaviour in the two tables. At 13 TeV the scale dependence of �NLOQCD
(µ)

increases with increasing scales. This is to be expected: the LO1 contribution has a large
renormalisation-scale dependence, resulting in a rapidly decreasing cross section with in-
creasing scales. In order to counterbalance this, the scale dependence of the NLO1 contribu-
tion must be opposite so that the scale dependence at NLO QCD accuracy is reduced. On
the other hand, at 100 TeV, the scale dependence of the �NLO1

(µ) decreases with increasing
scales, suggesting that the scale dependence at LOQCD + NLOQCD is actually larger than
at LOQCD. As can be seen in Tab. 2 this does not appear to be the case. The reason
is that contrary to 13 TeV, at 100 TeV collision energy the LOQCD has not only a large
renormalisation-scale dependence, but also the factorisation-scale one is sizeable. In fact,
the scale dependence in Tab. 2 is dominated by terms in which µr and µf are varied in op-
posite directions, i.e., {µr, µf} = {2µc, µc/2} and {2µc, µc/2}. However, in Tab. 4 we only
consider the simultaneous variation of µr and µf . If we had estimated the scale uncertainty
in Tabs. 1 and 2 by only varying µ = µr = µf , we would actually have seen an increment
of the uncertainties in moving from LOQCD to LOQCD +NLOQCD.

The NLO EW corrections, the NLO2 contribution, are negative and have a �4-6%
impact w.r.t. the LO1 cross section. This is well within the LOQCD + NLOQCD scale
uncertainties. The opening of the tW ! tW scattering enhances the NLO3 contribution
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�[fb] LOQCD LOQCD +NLOQCD LO LO +NLO LO+NLO

LOQCD+NLOQCD

µ = HT /2 363+24%

�18%
544+11%

�11%
(456+5%

�7%
) 366+23%

�18%
577+11%

�11%
(476+5%

�7%
) 1.06 (1.04)

Table 1. Cross sections for tt̄W± production at 13 TeV in various approximations. The numbers
in parentheses are obtained with the jet veto of eq. (3.6) applied.

�[pb] LOQCD LOQCD +NLOQCD LO LO +NLO LO+NLO

LOQCD+NLOQCD

µ = HT /2 6.64+28%

�21%
16.58+17%

�15%
(11.37+11%

�12%
) 6.72+27%

�21%
20.86+15%

�14%
(14.80+11%

�11%
) 1.26 (1.30)

Table 2. Same as in Tab. 1 but for 100 TeV.

3.2 Results for pp ! tt̄W±
production

We start by presenting predictions for pp ! tt̄W± total cross sections at 13 and 100 TeV
proton–proton collisions with and without applying a jet veto and then we discuss results
at the differential level. The total cross sections at 13 TeV for tt̄W± production are shown
in Tab. 1 at different accuracies, namely, LOQCD, LOQCD +NLOQCD, LO and LO+NLO.
We also show for each value its relative scale uncertainty and we provide the ratio of the
predictions at LO + NLO and LOQCD +NLOQCD accuracy. Analogous results at 100 TeV
are displayed in Tab. 2. Numbers in parentheses refer to the case in which we apply a jet
veto, rejecting all the events with

pT (j) > 100 GeV and |y(j)| < 2.5 , (3.6)

where also hard photons are considered as a jet.4 The purpose of this jet veto will become
clear in the discussion below. Further details about the size of the individual (N)LO

i
terms

are provide in Tab. 3 (13 TeV) and Tab. 4 (100 TeV), where we show predictions for the
quantities

�(N)LOi
(µ) =

⌃(N)LOi
(µ)

⌃LOQCD
(µ)

, (3.7)

where ⌃(µ) is simply the total cross section evaluated at the scale µf = µr = µ. In Tabs. 3
and 4 we do not show the result for LO1 ⌘ LOQCD, since it is by definition always equal
to one, regardless of the value of µ. We want to stress that results in Tabs. 3 and 4 do not
show directly scale uncertainties; the value of µ is varied simultaneously in the numerator
and the denominator of �. The purpose of studying � as a function of µ will become clear
below when we discuss the different dependence in �NLO1

versus �NLO2
and �NLO3

.
From Tabs. 1 and 2 it can be seen that the LOQCD predictions, both at 13 and 100

TeV, have a scale dependence that is larger than 20%. Including the LOi contributions with
4We explicitly verified that vetoing only quark and gluons, but not photons, leads to differences below

the percent level. Moreover, from an experimental point of view, vetoing jets that are not isolated photons
would be simply an additional complication.
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NLO3 is large and it is not suppressed by the 
jet veto (numbers in parentheses) as much as 
NLO QCD corrections. 
NLO QCD corrections depend on the scale, 
while NLO EW and NLO3 do not.
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1
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0.1 
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Naive estimate 

Numbers in parentheses refer to the case of a jet 
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Figure 1: tW ! tW scattering at the LHC. For definiteness, in the inset we show the diagrams
corresponding to tW� ! tW�.

To summarize, in certain two to two scattering processes the sensitivity to non-standard top-Z
couplings is enhanced at high energies, possibly overcoming the limited experimental precision.
The enhancement scales as c̄ p2/v2 ⇠ g2⇤p

2/⇤2, which can be much larger than one in models
where g⇤ � 1, without being in conflict with the e↵ective field theory expansion, that is p2 <
⇤2. This approach then takes advantage of the high scattering energies accessible at the LHC.
We explicitly demonstrate its e↵ectiveness in the next section, focusing on tW ! tW .

3 tW ! tW scattering as case study

Our goal is to study the scattering amplitudes involving tops (and/or bottoms) and W,Z or
h that increase at high energies, and to exploit this growth to probe top-Z interactions. After
examining all the possible combinations, we focus on the process tW ! tW . Our motivation
for this choice is threefold:

1. The amplitude for tW ! tW scattering grows with the square of the energy if either
the ZtLtL or the ZtRtR couplings deviate from their SM values.

2. The corresponding collider process, pp ! tt̄Wj, gives rise to same-sign leptons (SSL),
an extremely rare final state in the SM. This process arises at O(gsg3w) in the gauge
couplings, where gs denotes the strong coupling and gw any electroweak coupling, as
shown in Fig. 1.

3. The main irreducible background, pp ! tt̄W +jets at O(g2+n

s
gw) with n � 0 the number

of jets, is insensitive to the details of the top sector, because the W is radiated o↵ a light
quark.

The amplitude for two to two scattering processes of the type  1 + �1 !  2 + �2, where
 1,2 = {t, b} and �1,2 = {�± ⌘ (�1 ⌥ i�2)/

p
2, �3, h} are the longitudinal W±, Z or h, is most

conveniently expressed in the basis of chirality eigenstate spinors. Retaining only terms that
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we compare LO, NLO results and LO predictions rescaled by a global flat K-factor for
production only. In section 4 we draw our conclusions and present an outlook.

2 Fixed-order corrections at the production level

In this section we describe the effects of fixed-order NLO QCD corrections at the production
level for tt̄V processes and tt̄H production (subsection 2.1), for tt̄V V processes (subsection
2.2) and then for tt̄tt̄ production (subsection 2.3). All the results are shown for 13 TeV
collisions at the LHC. In subsection 2.4 we provide total cross sections and global K-factors
for proton–proton collision energies from 8 to 100 TeV. With the exception of tt̄��, detailed
studies at NLO for tt̄V V processes are presented here for the first time. The other pro-
cesses have already been investigated in previous works, whose references have been listed
in introduction. Here, we (re-)perform all such calculations within the same framework,
MadGraph5_aMC@NLO, using a consistent set of input parameters and paying special
attention to features that are either universally shared or differ among the various processes.
Moreover, we investigate aspects that have been only partially studied in previous works,
such as the dependence on (the definition of) the factorisation and renormalisation scales,
both at integrated and differential level. To this aim we define the variables that will be
used as renormalisation and factorisation scales.

Besides a fixed scale, we will in general explore the effect of dynamical scales that
depend on the transverse masses (mT,i) of the final-state particles. Specifically, we will
employ the arithmetic mean of the mT,i of the final-state particles (µa) and the geometric
mean (µg), which are defined as

µa =
HT

N
:=

1

N

X

i=1,N(+1)

mT,i , (2.1)

µg :=

0

@
Y

i=1,N

mT,i

1

A
1/N

. (2.2)

In these two definitions N is the number of final-state particles at LO and with N(+1) in
eq. (2.1) we understand that, for the real-emission events contributing at NLO, we take
into account the transverse mass of the emitted parton.2 There are two key aspects in
the definition of a dynamical scale: the normalisation and the functional form. We have
chosen a “natural” average normalisation in both cases leading to a value close to mt when
the transverse momenta in the Born configuration can be neglected. This is somewhat
conventional in our approach as the information on what could be considered a good choice
(barring the limited evidence that a NLO calculation can give for that in first place) can
be only gathered a posteriori by explicitly evaluating the scale dependence of the results.
For this reason, in our studies of the total cross section predictions, we vary scales over

2This cannot be done for µg; soft real emission would lead to µg ⇠ 0. Conversely, µa can also be defined
excluding the partons from real emission and, in the region where mT,i’s are of the same order, is numerically
equivalent to µg. We remind that by default in MadGraph5_aMC@NLO the renormalisation and
factorisation scales are set equal to HT /2.
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Complete-NLO

There is no gg 
contribution at 
NLO5 and NLO6.

The structure of the paper is the following. In sec. 2 we describe the calculations and
we introduce a more suitable notation for referring to the various O(↵i

s↵
j) contributions. In

sec. 3 we provide numerical results at the inclusive and differential levels for complete-NLO
predictions for proton–proton collisions at 13 and 100 TeV. We discuss in detail the impact
of the individual O(↵i

s↵
j) contributions. The common input parameters are described

in sec. 3.1, while pp ! tt̄W± and pp ! tt̄tt̄ results are described in secs. 3.2 and 3.3,
respectively. Conclusions are given in sec. 4.

2 Calculation framework for tt̄W±
and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of ↵s and ↵, a generic observable for the processes
pp ! tt̄W±(+X) and pp ! tt̄tt̄(+X) can be expressed as

⌃tt̄W
±
(↵s,↵) =

X

m+n�2

↵m

s ↵n+1⌃tt̄W
±

m+n+1,n , (2.1)

⌃tt̄tt̄(↵s,↵) =
X

m+n�4

↵m

s ↵n⌃tt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation
introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of ⌃tt̄W

±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are
given by the terms with m + n = 3 and are induced by the interference of diagrams from
the all the possible Born-level and one-loop amplitudes as well all the possible interferences
among tree-level diagrams involving one additional quark, gluon or photon emission. Anal-
ogously, for tt̄tt̄ production, LO contributions consist of ⌃tt̄tt̄

m+n,n terms with m + n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate
all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for
⌃tt̄W

±
(↵s,↵) and m+ n = 4, 5 for ⌃tt̄tt̄(↵s,↵).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the
different ⌃tt̄W

±
m+n+1,n

and ⌃tt̄tt̄
m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as ⌃tt̄W
±

LO
and ⌃tt̄tt̄

LO
and further redefine the perturbative orders entering

these two quantities as

⌃tt̄W
±

LO (↵s,↵) = ↵2

s↵⌃
tt̄W

±
3,0 + ↵s↵⌃

tt̄W
±

3,1 + ↵2⌃tt̄W
±

3,2

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
, (2.3)

⌃tt̄tt̄

LO(↵s,↵) = ↵4

s⌃
tt̄tt̄

4,0 + ↵3

s↵⌃
tt̄tt̄

4,1 + ↵2

s↵
2⌃tt̄tt̄

4,2 + ↵3

s↵⌃
tt̄tt̄

4,3 + ↵4⌃tt̄tt̄

4,4

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
+ ⌃LO4

+ ⌃LO5
. (2.4)

In a similar fashion the NLO corrections and their single perturbative orders can be defined
as

⌃tt̄W
±

NLO (↵s,↵) = ↵3

s↵⌃
tt̄W

±
4,0 + ↵2

s↵
2⌃tt̄W

±
4,1 + ↵s↵

3⌃tt̄W
±

4,2 + ↵4⌃tt̄W
±

4,3

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

, (2.5)

⌃tt̄tt̄

NLO(↵s,↵) = ↵5

s⌃
tt̄tt̄

5,0 + ↵4

s↵
1⌃tt̄tt̄

5,1 + ↵3

s↵
2⌃tt̄tt̄

5,2 + ↵2

s↵
3⌃tt̄tt̄

5,3 + ↵1

s↵
4⌃tt̄tt̄

5,4 + ↵5⌃tt̄tt̄

5,5

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

+ ⌃NLO5
+ ⌃NLO6

. (2.6)
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Figure 4. Representative diagrams for the one-loop gg ! tt̄tt̄ amplitude. The left diagram is of
O(↵3

s), the central one is of O(↵2
s↵) and the right one is of O(↵s↵2). The interferences of these

diagrams with those shown in Fig. 3 lead to contributions to NLO1, NLO2, NLO3 and NLO4.

level of complexity. While the NLO1 contribution have already been calculated in refs. [11,
43] and studied in detail in ref. [38], all the other (N)LO

i
contributions are calculated for

the first time here.
The gg ! tt̄tt̄ Born amplitude contains only O(↵2

s) and O(↵s↵) diagrams, while the
qq̄ ! tt̄tt̄ Born amplitude contains also O(↵2) diagrams. Thus the gg initial state con-
tributes to LOi with i  3 and the qq̄ initial states contribute to all the LOi. Also the
�g and �� initial states are available at the Born level; they contributes to LOi with re-
spectively i � 2 and i � 3. However, their contributions are suppressed by the size of the
photon parton distribution function (PDF). Representative gg ! tt̄tt̄ Born diagrams are
shown in Fig. 3. As already mentioned in the introduction, LO2 and LO3 are larger than
the values naively expected from ↵s and ↵ power counting, i.e., LO2 � (↵/↵s) ⇥ LOQCD

and LO3 � (↵/↵s)2⇥LOQCD. Thus, NLO2, NLO3 and also NLO4 are expected to be non-
negligible, especially NLO2, NLO3 because they involve “QCD corrections”2 to LO2 and
LO3 contributions, respectively. As discussed in ref. [38], the tt̄tt̄ production cross-section
is mainly given by the gg initial state, for this reason we expect LO4, (N)LO5

and NLO6 to
be negligible. Representative gg ! tt̄tt̄ one-loop diagrams are shown in Fig. 4. Although
suppressed by the photon luminosity, also the �g and �� initial states contribute to NLOi

with i � 2 and i � 3 respectively,
Note that, for both the pp ! tt̄W± and pp ! tt̄tt̄ processes, we do not include the

(finite) contributions from the real-emission of heavy particles (W±, Z and H bosons and
top quarks), sometimes called the “heavy-boson-radiation (HBR) contributions”. Although
they can be formally considered as part of the inclusive predictions at complete-NLO ac-
curacy, these finite contributions are typically small and generally lead to very different
collider signatures.3

Eqs. (2.5) and (2.6) define the NLO corrections in an additive approach. Another
possibility would be applying the corrections multiplicatively, which is not uncommon when
combining NLO QCD and NLO EW corrections. The difference between the two approaches

2As discussed in ref. [17], this classification of terms entering at a given order is not well defined;
some diagrams can be viewed both as a “QCD correction” and an “EW correction” to different tree-level
diagrams. Nevertheless, this intuitive classification is useful for understanding the underlying structure of
such calculations. For this reason we use these expressions within quotation marks.

3HBR contributions to NLO2 in tt̄W
± production have been provided in ref. [18].
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The structure of the paper is the following. In sec. 2 we describe the calculations and
we introduce a more suitable notation for referring to the various O(↵i

s↵
j) contributions. In

sec. 3 we provide numerical results at the inclusive and differential levels for complete-NLO
predictions for proton–proton collisions at 13 and 100 TeV. We discuss in detail the impact
of the individual O(↵i

s↵
j) contributions. The common input parameters are described

in sec. 3.1, while pp ! tt̄W± and pp ! tt̄tt̄ results are described in secs. 3.2 and 3.3,
respectively. Conclusions are given in sec. 4.

2 Calculation framework for tt̄W±
and tt̄tt̄ production at complete-NLO

Performing an expansion in powers of ↵s and ↵, a generic observable for the processes
pp ! tt̄W±(+X) and pp ! tt̄tt̄(+X) can be expressed as

⌃tt̄W
±
(↵s,↵) =

X

m+n�2

↵m

s ↵n+1⌃tt̄W
±

m+n+1,n , (2.1)

⌃tt̄tt̄(↵s,↵) =
X

m+n�4

↵m

s ↵n⌃tt̄tt̄

m+n,n , (2.2)

respectively, where m and n are positive integer numbers and we have used the notation
introduced in refs. [11, 17]. For tt̄W± production, LO contributions consist of ⌃tt̄W

±
m+n+1,n

terms with m + n = 2 and are induced by tree-level diagrams only. NLO corrections are
given by the terms with m + n = 3 and are induced by the interference of diagrams from
the all the possible Born-level and one-loop amplitudes as well all the possible interferences
among tree-level diagrams involving one additional quark, gluon or photon emission. Anal-
ogously, for tt̄tt̄ production, LO contributions consist of ⌃tt̄tt̄

m+n,n terms with m + n = 4

and NLO corrections are given by the terms with m + n = 5. In this work we calculate
all the perturbative orders entering at the complete-NLO accuracy, i.e., m + n = 2, 3 for
⌃tt̄W

±
(↵s,↵) and m+ n = 4, 5 for ⌃tt̄tt̄(↵s,↵).

Similarly to ref. [19], we introduce a more user-friendly notation for referring to the
different ⌃tt̄W

±
m+n+1,n

and ⌃tt̄tt̄
m+n,n quantities. At LO accuracy, we can denote the tt̄W± and

tt̄tt̄ observables as ⌃tt̄W
±

LO
and ⌃tt̄tt̄

LO
and further redefine the perturbative orders entering

these two quantities as

⌃tt̄W
±

LO (↵s,↵) = ↵2

s↵⌃
tt̄W

±
3,0 + ↵s↵⌃

tt̄W
±

3,1 + ↵2⌃tt̄W
±

3,2

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
, (2.3)

⌃tt̄tt̄

LO(↵s,↵) = ↵4

s⌃
tt̄tt̄

4,0 + ↵3

s↵⌃
tt̄tt̄

4,1 + ↵2

s↵
2⌃tt̄tt̄

4,2 + ↵3

s↵⌃
tt̄tt̄

4,3 + ↵4⌃tt̄tt̄

4,4

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
+ ⌃LO4

+ ⌃LO5
. (2.4)

In a similar fashion the NLO corrections and their single perturbative orders can be defined
as

⌃tt̄W
±

NLO (↵s,↵) = ↵3

s↵⌃
tt̄W

±
4,0 + ↵2

s↵
2⌃tt̄W

±
4,1 + ↵s↵

3⌃tt̄W
±

4,2 + ↵4⌃tt̄W
±

4,3

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

, (2.5)

⌃tt̄tt̄

NLO(↵s,↵) = ↵5

s⌃
tt̄tt̄

5,0 + ↵4

s↵
1⌃tt̄tt̄

5,1 + ↵3

s↵
2⌃tt̄tt̄

5,2 + ↵2

s↵
3⌃tt̄tt̄

5,3 + ↵1

s↵
4⌃tt̄tt̄

5,4 + ↵5⌃tt̄tt̄

5,5

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

+ ⌃NLO5
+ ⌃NLO6

. (2.6)
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Figure 3. Representative diagrams for the Born gg ! tt̄tt̄ amplitude. The left diagram is of
O(↵2

s), the right one is of O(↵s↵). Both diagrams involve tt ! tt scattering contributions.

in detail in ref. [38], where giant K-factors for the pT (tt̄) distribution have been found.
Large QCD corrections are induced also by the opening of the gq ! tt̄W±q0 channels,
which depend on the gluon luminosity and are therefore enhanced for high-energy proton–
proton collisions. Moreover, the pT (tt̄) distribution receives an additional log2(p2

T
(tt̄)/m2

W
)

enhancement in the qg initial-state subprocess (see left diagram in Fig. 2 and ref. [38] for
a detailed discussion). Also, the impact of soft-gluon emissions is non-negligible and their
resummed contribution has been calculated in refs. [39–41] up to next-to-next-to-leading-
logarithmic accuracy. The NLO2 has been calculated for the first time in ref. [18] and
further phenomenological studies have been provided in ref. [42]. In a boosted regime, due
to Sudakov logarithms, the NLO2 contribution can be as large as the NLO QCD scale
uncertainty.

The NLO3 and NLO4 contributions are calculated for the first time here. In particular,
the NLO3 contribution is expected to be sizeable since it contains gq ! tt̄W±q0 real-
emission channels that involve EW tW ! tW scattering (see right diagram in Fig. 2),
which as pointed out in ref. [33] can be quite large. Moreover, as in the case of NLO1,
due to the initial-state gluon this channel becomes even larger by increasing the energy of
proton–proton collisions.1 The tW ! tW scattering is present also in the NLO4 via the
�q ! tt̄W±q0, however in this case its contribution is suppressed by a factor ↵/↵s and
especially by the smaller luminosity of the photon. In addition to the real radiation of
quarks, also the qq̄0 ! tt̄W±g and qq̄0 ! tt̄W±� processes contribute to the NLO3 and
NLO4, respectively. Concerning virtual corrections, the NLO4 receives contributions only
from one-loop amplitudes of O(↵5/2), interfering with O(↵3/2) Born diagrams. Instead,
the NLO3 receives contributions both from O(↵5/2) and O(↵s↵3/2) one-loop amplitudes
interfering with O(↵s↵1/2) and O(↵3/2) Born diagrams, respectively. Clearly, due to the
different charges, NLOi terms are different for the tt̄W+ and tt̄W� case, however, since we
did not find large qualitative differences at the numerical level, we provide only inclusive
results for tt̄W± production.

We now turn to the case of tt̄tt̄ production, whose calculation involves a much higher

1In tt̄Z(tt̄H) production the NLO3 contributions feature tH ! tH(tZ ! tZ) scattering in gq !
tt̄Zq(gq ! tt̄Hq) real-emission channels. However, at variance with tt̄W

± production, the gg initial state
is available at LOQCD. Thus, the qg luminosity is not giving an enhancement and the relative impact from
NLO3 is smaller than in tt̄W

± production.
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The gg initial state amounts to  
~90% of LO cross section at 13 
TeV and almost all the cross 
section at 100 TeV.  
There is no gg contribution at LO4 
and LO5.
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Cross sections
13 TeV 100 TeV

�[%] µ = HT /8 µ = HT /4 µ = HT /2

LO2 �26.0 �28.3 �30.5

LO3 32.6 39.0 45.9

LO4 0.2 0.3 0.4

LO5 0.02 0.03 0.05

NLO1 14.0 62.7 103.5

NLO2 8.6 �3.3 �15.1

NLO3 �10.3 1.8 16.1

NLO4 2.3 2.8 3.6

NLO5 0.12 0.16 0.19

NLO6 < 0.01 < 0.01 < 0.01

NLO2 +NLO3 �1.7 �1.6 0.9

Table 7. tt̄tt̄: �(N)LOi
/�LOQCD ratios at 13 TeV, for different values of µ = µr = µf .

large. Indeed, NLO2 and NLO3 terms involve explicit logarithms of µ that compensate
the PDF and ↵s scale dependence at LO2 and LO3 accuracy, respectively. Thus, in tt̄tt̄

production, at variance with most of the other production processes studied in the literature,
quoting the relative size of NLOEW ⌘ NLO2 or NLO3 corrections without specifying the
QCD-renormalisation and factorisation scale is simply meaningless. Moreover, �NLO2

and
�NLO3

corrections can separately be very large, easily reaching ±15% (depending on the value
of µ). Surprisingly, for our central value of the renormalisation and factorisation scales, the
�NLO2

and �NLO3
are almost zero8, particularly for 13 TeV. On the other hand, if we had

taken HT /2 or even mtt̄tt̄ as our central scale choice, the NLO2 and NLO3 corrections
relative to the LO1, �NLO2

and �NLO3
, would have been much larger. Still, even for the

central value µ = HT /4, the corrections are much larger than foreseen, especially for �NLO3

which naively is expected to be of order ↵3
s↵

2/↵4
s = ↵2/↵s ⇠ 0.1% level. On the other hand,

the relative cancellation observed between NLO2 and NLO3 contributions is even larger than
in the case of LO2 and LO3. As can be seen in the last rows of Tabs. 7 and 8, at the inclusive
level the sum of the ratios �NLO2

+ �NLO3
is not only small, but also stable under scale

variation,9 resulting in corrections of at most a few percents w.r.t. the LOQCD. Furthermore,
particularly at 13 TeV, �NLO2

+ �NLO3
receives also additional cancellations when summed

to �NLO4
, which itself is much larger than the expected ↵2

s↵
3/↵4

s = ↵3/↵2
s ⇠ 0.01% level.

To the best of our understanding, these cancellations are accidental.
These large and accidental cancellations among the (N)LO

i
terms with i > 1 are

particularly relevant from a BSM perspective, since the level of these cancellations may
be altered by new physics. As an example, we can refer to the case of an anomalous yt
coupling, which, as we have already mentioned, has been considered in the tree-level analysis

8Our choice for the central value of the scales has not been tuned in order to reduce the effects from
the NLO2 and NLO3. Rather, it is motivated by the study in ref. [38], which deals only with the LO1 and
NLO1.

9We verified this feature also with different functional forms for the scale µ.
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�[%] µ = HT /8 µ = HT /4 µ = HT /2

LO2 �18.7 �20.7 �22.8

LO3 26.3 31.8 37.8

LO4 0.05 0.07 0.09

LO5 0.03 0.05 0.08

NLO1 33.9 68.2 98.0

NLO2 �0.3 �5.7 �11.6

NLO3 �3.9 1.7 8.9

NLO4 0.7 0.9 1.2

NLO5 0.12 0.14 0.16

NLO6 < 0.01 < 0.01 < 0.01

NLO2 +NLO3 �4.2 �4.0 2.7

Table 8. tt̄tt̄: �(N)LOi
/�LOQCD ratios at 100 TeV, for different values of µ = µr = µf .

of ref. [34]. Terms proportional to y2t are present in all the (N)LO
i

with i � 2 and terms
proportional to y4t are present in all the (N)LO

i
with i � 3, but also terms proportional to

y6t are present for any i � 3. Moreover, also contributions proportional to yt, y3t and y5t are
possible. Similar considerations apply also to other new physics effects in tt̄tt̄ production
(see, e.g., ref. [64] and references therein for scenarios already analysed in the literature).

In order to understand the hierarchy of the different (N)LO
i
contributions, it is impor-

tant to note that at 13 TeV and especially at 100 TeV the total cross section is dominated
by the gg initial state (see, e.g., ref. [38]). For this reason, the LO4, LO5, NLO5 and NLO6

contributions, which are vanishing for the gg initial state, are much smaller than the other
contributions. The modest scale dependence of �NLO4

is also induced by this feature; the
NLO4 contribution mainly arises from “EW corrections” to gg-induced LO3 contributions,
which do not have any explicit dependence on µ; and therefore the scale dependence of the
NLO4 follows the scale dependence of the LO3 to a large extent.

Differential distributions

We now move to the description of the results at the differential level, where we consider the
following distributions: the invariant mass of the four (anti)top quarks m(tt̄tt̄) (Fig. 9), the
sum of the transverse masses of all the particles in the final state HT as defined in eq. (3.5)
(Fig. 10), the transverse momenta of the hardest of the two top quarks pT (t1) (Fig. 11), and
the rapidity of the softest one y(t2) (Fig. 12). At variance with the case of tt̄W± production
in sec. 3.2, we organise plots according to the observable considered. In the figures we
display 13 TeV results on the left and 100 TeV results on the right. In the upper plots of
each of these figures we provide predictions at different levels of accuracy, using a similar
layout10 as in Figs. 5 and 6, which is described in detail in sec. 3.2. Also for tt̄tt̄ production,
comparisons among the scale uncertainties of the LOQCD and LOQCD+NLOQCD result have

10At variance with tt̄W
± production, we do not show LOQCD + NLOQCD + NLOEW predictions. This

level of accuracy is rather artificial, since the NLOEW ⌘ NLO2 terms are dominated by “QCD corrections”
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Naive estimate

LO2 and LO3 are large and have also large cancellations. 
NLO2 and NLO3 are mainly given by ‘QCD corrections’ on top of them, so they are large 
and strongly depend on the scale choice, at variance with standard EW corrections. 
Accidentally, relatively to LO1, NLO2+NLO3 scale dependence almost disappears. 
What happens if BSM enters into the game? Anomalous yt ? 
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Figure 9. The m(tt̄tt̄) distribution in tt̄tt̄ production. Left: 13 TeV. Right: 100 TeV. Upper
plots: scale uncertainty bands (same layout as the plots in Figs. 5 and 6). Central plots: individual
(N)LOi contributions normalised to LO1 ⌘ LOQCD. Lower plots: same as central plots but only
with NLO2, NLO3, and their sum, at different values of the scale µ. These lower plots do not show
scale uncertainties. Note that NLO1 ⌘ NLOQCD and NLO2 ⌘ NLOEW.
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Figure 9. The m(tt̄tt̄) distribution in tt̄tt̄ production. Left: 13 TeV. Right: 100 TeV. Upper
plots: scale uncertainty bands (same layout as the plots in Figs. 5 and 6). Central plots: individual
(N)LOi contributions normalised to LO1 ⌘ LOQCD. Lower plots: same as central plots but only
with NLO2, NLO3, and their sum, at different values of the scale µ. These lower plots do not show
scale uncertainties. Note that NLO1 ⌘ NLOQCD and NLO2 ⌘ NLOEW.
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Figure 9. The m(tt̄tt̄) distribution in tt̄tt̄ production. Left: 13 TeV. Right: 100 TeV. Upper
plots: scale uncertainty bands (same layout as the plots in Figs. 5 and 6). Central plots: individual
(N)LOi contributions normalised to LO1 ⌘ LOQCD. Lower plots: same as central plots but only
with NLO2, NLO3, and their sum, at different values of the scale µ. These lower plots do not show
scale uncertainties. Note that NLO1 ⌘ NLOQCD and NLO2 ⌘ NLOEW.
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13 TeV

Large cancellations among (N)LO2 and (N)LO3 
are present also at the differential level.  
At the threshold also NLO4 is large.
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Differential distributions: Sudakov enhancements 
Sudakov enhancements are NOT exceptions and involve at NLO corrections of 
order  with .  −α logk(s/m2
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Figure 7. Transverse momentum of the hardest same-flavour dressed-lepton pair in the processes of
eq. (6.17) (left panel), and Higgs transverse momentum in the processes of eq. (6.18) (right panel).

We have chosen the two processes in eq. (6.17) in order to be definite, as representatives of

the class of reactions with four final-state leptons; both have been studied before [26, 27,

30, 35, 130, 131]. In fact, without any additional complications, MG5 aMC is able to deal

with any process that belongs to this class, regardless of the particular flavour and charge

combinations.

In detail, the definitions of the pT (ll) (relevant to pp → e+e−µ+µ−) and pT (lν) (relevant

to pp → e+νeµ−ν̄µ) observables are the following. For the former, one uses dressed leptons;

the e+e− and µ+µ− pairs transverse momenta are then computed, and the largest of the

two is set equal to pT (ll). In the latter case, charged leptons are again dressed first; then,

the transverse momenta of the e+νe and µ−ν̄µ pairs are computed (by using the MC truth

information to find the neutrinos), and the largest of the two is set equal to pT (lν). The

NLO EW corrections behave rather differently for the two processes. While for the four

charged lepton process they display the typical Sudakov behaviour at high pT , for the other

process the corrections are positive and growing for pT ! 40 GeV, starting to decrease only

towards pT " 400 GeV. We point out that the two processes have significant differences in

their underlying mechanisms. Firstly, although both 2l2ν and 4l production are dominated

by di-boson resonant contributions (namely, di-W and di-Z, respectively), it is only the

former case that features diagrams with t-channel spin-one exchanges (thus enhanced at

large momentum transfers). These appear in γγ-initiated processes, owing to the direct

γW+W− coupling. Secondly, partonic processes such as γq → W+∗W−∗q′ that give rise

to 2l2ν final states may be enhanced at large lepton-pair pT ’s owing to quasi-collinear

q∗ → W ∗q′ splittings (see e.g. ref. [121]). While a similar mechanism also occurs in 4l

production, in that case its effects are balanced by a stronger suppression than in the

case of 2l2ν production.39 Finally, at the NLO 2l2ν production features a real-emission

contribution due to an underlying tW doubly-resonant mechanism, which might induce very

39The overall impact of quasi-collinear enhancements on observable cross sections ultimately depends on

the interplay between their kinematics characteristics, the partonic matrix elements, and PDF effects —

see e.g. refs. [132, 133] for discussions on this point.
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Figure 8. Transverse momentum of the hardest vector boson in the processes of eq. (6.19) (left
panel), and transverse momentum of the Higgs boson in the processes of eq. (6.20) (right panel).
Some of the histograms in the main frames are rescaled as indicated in order to enhance their
visibility.

since it receives contributions from real-emission diagrams with an s-channel top quark

(i.e. from an underlying t∗W−Z or t̄∗W+Z production mechanism). Thus, while tech-

nically this process is doable in our setup by setting the top width equal to its physical

value in order to prevent the matrix elements from diverging on the top resonance (see

section 5.5), potentially it still poses the problems common to all processes which, at the

NLO, “interfere” with a top-induced “background” (such as instabilities in the numerical

integration caused by extremely large K factors). We have already discussed an example

(W+∗W−∗ production, eq. (6.17)) where such an interference in practice does not lead to

any issues at the perturbative orders we are interested in. However, the case of ZW−W+

production is much more involved, and therefore we prefer to postpone its study to when

MG5 aMC will feature an automated treatment of the subtraction or removal of resonant

contributions, with procedures analogous to those already considered in the literature in

different contexts.41 Another, simpler, solution is that of performing the computation in a

scheme with four flavours. This will not be done here, but it is feasible with the present

version of MG5 aMC (we note that a 4FS restriction of the OS model is available, while

its CM counterpart has still to be constructed).42

From the inset in left panel of figure 8, we see that ZZZ production exhibits the

typical behaviour of NLO EW corrections, which are small at small transverse momentum,

and grow in absolute value with pT . The other two processes in eq. (6.19) display a more

intricate behaviour, owing to a combination of effects: the virtual Sudakov corrections,

which decrease the rates; and the positive enhancement of the cross section, due to the

41The procedures that are being implemented in MG5 aMC are fully local in the phase-space of final-

state particles, such as those of refs. [145–153]. Global [134, 154–156] or semi-local [157–160] approaches

are not suited to automated observable-independent short-distance computations.
42Another possibility in the context of a five-flavour computation is that of adding a dedicated integration

channel for each of the new resonant contributions that open at the NLO level.
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What are EW Sudakov logarithms?
QCD: virtual and real terms are separately IR divergent (  poles). In 
physical cross sections the contributions are combined and poles cancel. 

QED: same story, but I can also regularise IR divergencies via a photon-
mass . So  poles  , where  is a generic scale. 

EW: with weak interactions  and W and Z radiation are 
typically not taken into account, which is anyway IR-safe. 

Therefore, at high energies EW loops induce corrections of order 

 

where k is the number of loops and . These logs are physical. Even 
including the real radiation of W and Z, there is not the full cancellation of 
this kind of logarithms. 

1/ϵ

λ 1/ϵ → log(Q2/λ2) Q

λ → mW, mZ

−αk logn(s/m2
W)

n ≤ 2k
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Why automate Sudakov in Madgraph5_aMC@NLO?

NLO EW corrections already fully include one-loop EW Sudakov logarithms 
, why automate them? 

- They can be calculated analytically via tree-level amplitudes only. 
They are a very good approximation of NLO EW at high energy and 
they can be computed much faster. No cancellations among virtual 
and real, so very stable results. 

- When NLO EW becomes large and negative, Sudakov logarithms 
have to be resummed. Having in one tool separately the exact NLO 
EW and its Sudakov component will allow matching of NLO EW and 
EW LL resummed.

- They depend only on properties of the external particles: masses, 
momenta, helicities, charges, SU(2) components, hypercharges. The 
generalisation to the BSM case is therefore much easier than the 
NLO EW case.

(n = 1, k = 1,2)
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At high energies, mass suppressed 
terms vanish so  

NLO logarithmically grows but 
(NLO-Sudakov)/LO ~ %(1%)

one-loop EW virtual corrections 
 =

 [Sudakov Logs  +
 constant term  +

mass-suppressed terms ]

%(α)

α %(−logk(s/m2
W), k = 1,2)

%(1)
%(m2

W /s)
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Our revisitation and automation: Amplitude level
We have revisited and automated in aMG5 the Denner&Pozzorini 
algorithm for the evaluation of one-loop EW Sudakov corrections to 
amplitudes (Denner, Pozzorini ’01). In particular we have introduced the 
following novelties.  

- IR QED divergencies are dealt with via Dimensional Regularisation, 
with strictly massless photons and light fermions. 

- Additional logarithms that involve ratios between invariants, and 
therefore angular dependences, are taken into account. 

- We correctly take into account an imaginary term that was previously 
omitted in the literature. Relevant for  processes with 

- Moving to the level of interferences of tree and one-loop amplitudes, 
we take into account NLO EW contributions originating from QCD 
loops on top of subleading LO terms.

2 → n n > 2
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Example ( ): Imaginary term and scan in 2 → 3 s

new implementation of the modifiedDP algorithm described in this work. Dashed lines refer

to the pure LA (SSCs!rkl terms not included), denoted in the plots as “SDK, s ! rkl OFF”,

while the solid lines to the case in which SSCs!rkl terms are taken into account, denoted

in the plots as “SDK, s ! rkl ON”. As expected, the values of the ratio over LO for

both dots and lines are negative and grow in absolute value for large values of s. A correct

implementation and evaluation of the LA of Sudakov logarithms implies that the di↵erences

between each line and the dots converge to a constant value for s ! 1. Indeed, since all

the mass-suppressed terms of O(↵) corrections go to zero for large s, the terms that survive

are either logarithmic enhanced, those that have to be exactly captured by the LA (lines),

or constant for t/s fixed. We therefore separately display the interpolation of the di↵erence

between the dots and the solid line (second inset) and between the dots and the dashed

line (third inset). These quantities are denoted as (Virt-SDK)/LO in the plots. The layout

of the lower plots of Figs. 1 and 2 is very similar to the one of the upper plots, however, in

this case the x-axis corresponds to the angle ✓ between the first and third particle, which

in turn parametrises the value of t, in the range 10�2 . ✓ . ⇡/2. We have fixed the value

of s to
p
s = 10 TeV for all lower plots.

In order to produce the upper plots, the scan in
p
s with t/s fixed, we have performed

the following procedure. We start by generating the momenta for a phase-space point with
p
s = 103 GeV and t/s = �1/20 for the specific process considered. Then, we iteratively

repeat the following steps for increasing the value of
p
s by keeping fixed the t/s ratio

within an error of the order of permille. First, we rescale the trimomenta of the outgoing

particles by a common factor. Second, we impose on-shell conditions for the outgoing

particles in order to obtain their energies. Finally, we impose momentum conservation for

determining the momenta of the initial state. In this way, we can generate several phase-

space points by scanning the
p
s range and keeping the ratio t/s very stable. Each one of

the phase-space points obtained is then used as input for evaluating the exact virtual NLO

EW corrections of O(↵) as well the LA with and without the inclusion of the SSCs!rkl

terms. The SDK, s ! rkl ON and the SDK, s ! rkl OFF lines are the interpolation of

these LA results.

As can be seen in both Figs. 1 and 2, all the second and third insets of upper plots show

perfectly horizontal lines for large values of s, for each individual helicity configuration.

We have shown here only representative processes, but we did not see any exception in all

cases that we have checked. This is a clear sign of a correct implementation of the LA of

Sudakov logarithms.

In order to rigorously check the last statement, we have fitted the quantities (Virt-

SDK)/LO via a function of the form

A log10(
p
s/[1 GeV]) +B , (6.2)

with the method of least squares. While the coe�cient B has been found in general of the

order of few percents for the plots shown here, the quantity A is in general of the order of

10�4 and compatible with 0 due to the associated statistical error,14 therefore supporting

our previous statement about the correct implementation of the LA of Sudakov logarithms.
14We remind the reader that statistical errors also include e↵ects induced by the numerical method that
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Denner&Pozzorini algorithm works only with 
non mass-suppressed LO processes: we select 
only helicity configurations > 10^(-3) of the 
dominant one.

Dots: NLO EW (MadLoop). Lines = Sudakov. 
Dashed: standard approach,  omitted 
Solid: our formulation,  included 

iπΘ(rkl)
iπΘ(rkl)

Dots-Solid/LO: horizontal, the correct Log 
dependence is captured.

Dots-Dashed/LO: not horizontal, the 
correct Log dependence is lost.

with n > 2. In this section we show numerical results about this aspect, for 2 ! n partonic

processes with n = 3, 4. Again, we select representative processes for which the relevant

plots are displayed in Fig. 3. Each plot shows the dependence on s of several quantities,

and the layout is very similar to the one of the upper plots of Figs. 1 and 2. Here, the

LA always includes the SSCs!rkl terms,16 but we distinguish the case in which the terms

proportional to i⇡⇥(rkl) in eqs. (2.23)-(2.25) are excluded, as in the original DP algorithm

in Ref. [39], or retained. The former are displayed as dashed lines (i⇡⇥(rkl) OFF) and the

latter as solid lines (i⇡⇥(rkl) ON). For each leading helicity configuration, we also show

in the second and third inset the di↵erence between the LA and the exact result both

normalised to the LO, respectively with and without taking into account the imaginary

component.

In order to produce the plots, scanning in
p
s, we have performed a procedure similar

to the one explained in the previous section for the upper plots in Figs. 1 and 2. The only

di↵erence here is the starting point. For 2 ! n partonic processes with n > 2, besides

s, there is more than only one independent kinematic invariant that can be built via the

external momenta. In order to avoid pathological configurations with an |rkl| ' M
2
W
, we

randomly generate the first set of external momenta setting
p
s = 104 GeV and requiring

|rkl|

s
>

1

8
8 rkl . (6.3)

We remind the reader, as already explained in footnote 1, that eq. (6.3) is a condition that

can be satisfied for 2 ! 3 or 2 ! 4 processes, but not in general for 2 ! n, for which this

lower bound has to be lowered more and more increasing the value of n, further departing

from the condition of eq. (2.4).

Looking at Fig. 3, it is manifest how the case including terms proportional to i⇡⇥(rkl)

correctly catches the LA, while the other one does not; perfectly horizontal lines are present

in the second inset, while in the third inset a dependence on s is clearly visible. For some

of the processes considered, such as dd̄ ! Zdd̄, this dependence seems to cancel out for

the sum over the di↵erent helicity configurations. In large part this is correct, but a small

dependence is still present and it is simply not visible from the plot. We in general see this

feature also for individual helicity configurations, namely the i⇡⇥(rkl) is often formally

relevant but sometimes the numerical e↵ect is very small. For other processes, such as

e
+
e
�

! e
+
e
�
µ
+
µ
� or ud ! Zud, even for the helicity-summed result the lack of the

terms proportional to i⇡⇥(rkl) leads to sizeable numerical e↵ects.

In order to provide a more quantitative statement, we list in Tab. 1 the results of

the fit of (Virt-SDK)/LO for each leading-helicity configuration (and their sum) of the

process dd̄ ! Zdd̄. We have used again the method of least squares and the functional

form of eq. (6.2). As can be seen in the third column of Tab. 1, all helicities exhibit a

non-vanishing slope when the terms proportional to i⇡⇥(rkl) are turned o↵. Notably, as

anticipated before, this happens also for the sum over the helicities, which for this particular

process and kinematic configuration (condition (6.3)) leads to a cumulative error of 2.6% in

the LA for every factor of 10 in increase of the energy. The error is process dependent and

16For brevity, in this section we will write in the plots only SDK and not SDK, s ! rkl ON as in Sec. 6.2.
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SOME EXAMPLES AT 100 TeV
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ZZZ production at 100 TeV

Orange: NLO EW, (dotted: NLO EW no  PDF) 
Green = , Red =  
Dashed: standard approach for amplitudes. 
Solid: our formulation (more angular information) 
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 and approaches return 
very similar results (neutral final state).

Only the solid lines, having more angular 
information, correctly capture NLO EW.

SDKweak SDK0

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the
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WZ production at 100 TeV

Orange: NLO EW, (dotted: NLO EW no  PDF) 
Green = , Red =  
Dashed: standard approach for amplitudes. 
Solid: our formulation (more angular information) 
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NLO EW no  PDF. 
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captures the NLO EW prediction.
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γ

SDKweak

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the
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CONCLUSIONS 

- NLO QCD, NLO EW and Complete NLO predictions are 
essential in order to provide precise and reliable 
theoretical predictions for the LHC. 

- A lot of technology underlies the commands that let you 
calculate NLO with MadGraph5_aMC@NLO. Try to 
learn the basics idea if you want to critically understand 
the numerical outputs. 

- There is more than NLO (e.g. NNLO, NNNLO and other 
techniques besides fixed order). They are already 
relevant and they will be even more in the future. 
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