Tutorials on Monte Carlo Integration with BASES

Junichi Kanzaki (Kavli IPMU)

Iwate Collider School 2023

@ ANA Crowne Plaza Resort Appi Kogen

February 28, 2023

Purpose of this tutorial

- We already have a great tool:
 MadGraph5_aMC@NLO which provides
 - the computations of cross-sections,
 - the event generations, and
 - the use of tools for data manipulation and analysis.
 - You should only give physics process information and some parameters.
 - -> This tutorial aims to help you to understand what MG5 is doing internally by experiencing calculations by yourselves.

Environment and Plan

• Environment:

- Essential: Development with gfortran, make, ..., for the installation of BASES
- Optional (recommended): Python3 with matplotlib for data visualization

· Plan:

- Monte Carlo integration with BASES simple 1-dim., multi-dim. integration with examples of plotting.
- Example of calculating cross-section of a physics process

Numerical Integration

- The computation of physics processes often reduces to the calculation of multivariable functions.
 - Physics quantities (ex. Cross-sections):
 f = f(x_i, i=1~N)
 x_i; four-vectors, helicities, etc.
 - If you want to observe some quantities, x_j , j=1~n (p_T of lepton or jet), you must integrate other unobserved variables.
- Monte Carlo integration using random numbers is particularly useful for higher-dimensional integrals, and Monte Carlo randomly chooses points at which the integrand is evaluated.

Monte Carlo Integration (ref.)

• We already have a good lecture by Olivier this morning.

- VEGAS: G.P. Lepage, J. Comput. Phys. 27 (1978) 192-203.
- BASES: S. Kawabata, Comput. Phys. Commun. 88, 309 (1995) Integration/Event generation
- MG5: J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP06 (2011) 128 Integration/Event generation

Random number

- Recent random number generators have enough performance in uniformity.
- For the integrations of multi-dimensional functions, the quality of random number generation becomes essential.
- The tutorial example of BASES includes a generator based on the Mersenne Twister: https://en.wikipedia.org/wiki/
 Mersenne Twister

- We assume the development environment with gfortran.
- Install python with "matplotlib" (optional) to experience plotting.
- Preparations: install libraries, bases50, helasv43, and sm
 - bases50: BASES library for the MC integration
 - helasv43: Helicity amplitude library (example4)
 - sm: Utility subroutines for the SM procces

Installation of examples

 After downloading the example package, bsexamples.tar.gz, please follow the README instruction.

```
1) Make bases libraries
   for BASES:
   cd bases50
   make install
   for HELAS:
   cd helasv43
   make install
   for other utilities:
   cd sm
   make install
```

The install commands above generate the following three libraries under ./lib: libbases50.a, libhelasv43.a and libsm.

Installation of examples (cont'd)

2) Make examples

```
cd example1
make
./example1
```

The program generates a histogram dump file: example1.dump

Test plotting (requiers matplotlib)

./plot.py

This script reads contents of "example1.dump" and generates a plot.

Tutorials with BASES

- Prepared samples are written in Fortran 90
- Examples are composed of the following three files:
 - ·mainb.f90 main program
 - •bfunc.f90 integrand function
 - user_modules.f90 initialization etc.

Tutorials with BASES (cont'd)

- BASES: two program phases
 - Grid optimizations
 - Data accumulations
- Parameters of BASES:
 - ncall the number of function calls per iteration
 - it1, it2 the maximum iterations for each program phase (it1-optimization, it2-accumulation).
 - acc1, acc2 the accuracy to stop iterations

Tutorials with BASES (cont'd)

• In "mainb.f90" the following subroutines are called:

call userin: initialization

call bases: execute integration with BASES

call bsinfo: display integration results

call bhplot: display histograms

call xhdump: generate histogram dump file

The integration of 1-dim. function:

$$f(x) = 2\sqrt{(1-x^2)}$$

between -1 < x < 1.

- 1. Make "example1" and execute it. Check the answer
- 2. Increase "ncall" and check the accuracy.

- 1. Learn how to define histograms in "userin." call xhinit(id,xmin,xmax,nbins,title)
- 2. Learn how to fill histograms in "bfunc": call xhfill(id, val, func)
- 3. The program generates a histogram dump file, "example.dump." If you have "matplotlib," execute the script: plot.py, which reads the file and generates a plot.

 Another example of the integration of multidimensional function:

$$f(x) = \prod_{i=1}^{n_{\text{dim}}} (2x_i)$$

- Try to change integration parameters.
- Try to prepare "plot.py" for the dump file, "example2.dump."

 Another example of the integration of a 2dimensional Gaussian function:

$$f_{XY}(x,y) = \frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-\frac{(x-\mu_X)^2}{2\sigma_X^2}} \times \frac{1}{\sqrt{2\pi\sigma_Y^2}} e^{-\frac{(y-\mu_Y)^2}{2\sigma_Y^2}}.$$

- Check results and histograms.
- Learn how to define and fill 2-dimensional histograms.
- Test "plot.py" and "plot_2d.py."

Calculate cross-sections of the Standard Model physics processes: $e^-e^+ \to ZH$

$$\sigma = \frac{1}{2s\beta} \frac{1}{2} \frac{1}{2} \int \sum_{\lambda} |\sum_{i} M_{i}|^{2} d\Phi$$
flux factor
$$= \frac{1}{2s\beta}$$
spin average
$$= \frac{1}{2} \times \frac{1}{2}$$

$$\lambda = \text{helicities of external particles}$$

$$M_{i} = \text{amplitude of i-th channel}$$

$$\Phi = \text{phase space}$$

Before the calculation of amplitude of physics process, we have to generate phase space:

$$e^-e^+ \to ZH$$

W: total collision energy

mz: Z boson mass

m_H: Higgs boson mass

-> calculate four-vectors of external particles: p_e^- , p_e^+ , p_Z , p_H

Two body phase space:

$$d\Phi_2 = \frac{1}{8\pi} \overline{\beta}(\frac{m_1^2}{s}, \frac{m_2^2}{s}) \int_{-1}^{+1} \frac{d\cos\theta}{2} \int_0^{2\pi} \frac{d\phi}{2\pi}$$

Total energy: $W(= \sqrt{s}) -> P_1(m_1) + P_2(m_2)$

- 1. Determine energies of P_1 and P_2 (E_1 and E_2) from total energy, W
- 2. Determine directions (\theta and \phi) of final particles with two random numbers and calculate four momenta for P1 and P2.

\theta: -1 < cos(\theta) < +1

\phi: 0 < \phi < 2 \pi

Then go to three body phase space:

$$d\Phi_3 = \int_{(m_1+m_2)^2}^{(\sqrt{s}-m_3)^2} \frac{dq^2}{2\pi} \int d\Phi_2(P = q + p_3) \int d\Phi_2(q = p_1 + p_2)$$

$$= \frac{1}{2} \frac{1}{32\pi^2} \frac{1}{32\pi^2} \int_{(m_1+m_2)^2}^{(\sqrt{s}-m_3)^2} dq^2 \overline{\beta} \left(\frac{q^2}{s}, \frac{m_3^2}{s}\right) \overline{\beta} \left(\frac{m_1^2}{q^2}, \frac{m_2^2}{q^2}\right)$$

$$\times \int_{-1}^{+1} d\cos\theta_3 \int_0^{2\pi} d\phi_3 \int_{-1}^{+1} d\cos\hat{\theta}_1 \int_0^{2\pi} d\hat{\phi}_1$$

$$W(= \sqrt{s}) - p_1(m_1) + p_2(m_3) + p_3(m_3)$$

-> Combination of two two-body phase space:

$$PS(p_3,q=p_1+p_2) + PS(p_1,p_2)$$

1. Determine the invariant mass of the system of p_1+p_2 , q^2 , with a random number:

$$m_1 + m_2 < q^2 < W - m_3$$

- 2. Generate four momenta of p_3 and p_1+p_2 with two body phase space.
- 3. Then generate p_{10} and p_{20} at the rest frame of p_1+p_2 with q^2 .
- 4. Rotate&Boost generated p_{10} and p_{20} to the lab. Frame, p_1 and p_2 .

- Requires two more libraries in addition to bases 50:
 - helasv43: new helicity amplitude library
 - -sm: utility library for the SM processes
- · Four program components:
 - mainb.f90
 - -bfunc.f90, matrix.f90, user_modules.f90

- · Generate a physics process with MG5 and save results with the "output standalone" command.
- · Generate a physics process with MG5 and save results with the "output" command. Extract the function "matrix" part starting from:

REAL*8 FUNCTION MATRIX(P,NHEL,IC) and copy it as "matrix.f90." Then, modify the character "C" at the beginning of lines to "!." Replace "INCLUDE 'coupl.inc'" with "use smcupl."

- · bfunc.f90:
 - generate two-body phase space: ph2bdy
 - select helicity combination as "nhel"
- · As initialization in "userin":
 - call sminit initialize SM parameters
 - call hlmode(1) initialize the helicity amplitude library
 - initialize initial state particles

- 1. Learn how to prepare the SM parameters.
- 2. Learn phase space generations.
- 3. Try other physics processes by yourself.
 You will learn more about how to use "MG5"!

Calculate cross-sections of the Standard Model physics processes with decays:

$$e^-e^+ \to Z(\to \mu^-\mu^+)H(\to b\overline{b})$$

- 1. The procedure is almost the same as "Tutorial-4."
- 2. Try the four-body phase space with decays.

Phase space generation for the decay of a resonance:

for the generation of the Breit-Wigner resonant shape the following variable transformation is effective.

$$x = \tan \theta$$

$$dx = d \tan \theta = \frac{1}{\cos^2 \theta} d\theta = (1 + \tan^2 \theta) d\theta$$

$$\to \frac{dx}{1 + x^2} = d\theta = d \arctan x$$

Phase space generation for the decay of a resonance:

$$\frac{dq^{2}}{(q^{2} - m^{2})^{2} + (m\Gamma)^{2}} = \frac{dq^{2}}{(m\Gamma)^{2}} \frac{1}{\left(\frac{q^{2} - m^{2}}{m\Gamma}\right)^{2} + 1}$$

$$= \frac{1}{m\Gamma} \frac{d\frac{q^{2} - m^{2}}{m\Gamma}}{\left(\frac{q^{2} - m^{2}}{m\Gamma}\right)^{2} + 1} = \frac{1}{m\Gamma} d \arctan \frac{q^{2} - m^{2}}{m\Gamma}$$

$$dq^{2} = \frac{(q^{2} - m^{2})^{2} + (m\Gamma)^{2}}{m\Gamma} d \arctan \frac{q^{2} - m^{2}}{m\Gamma}$$
$$= \frac{(q^{2} - m^{2})^{2} + (m\Gamma)^{2}}{m\Gamma} d\theta$$

Phase space generation for the decay of a resonance:

$$dq^{2} = \frac{(q^{2} - m^{2})^{2} + (m\Gamma)^{2}}{m\Gamma} d \arctan \frac{q^{2} - m^{2}}{m\Gamma}$$

$$= \frac{(q^{2} - m^{2})^{2} + (m\Gamma)^{2}}{m\Gamma} d\theta$$

$$\theta = \arctan \frac{q^{2} - m^{2}}{m\Gamma}$$

$$q^{2} = m\Gamma \tan \theta + m^{2}$$

$$q_{\min}^2 < q^2 < q_{\max}^2 \Rightarrow \theta_{\min} < \theta < \theta_{\max}$$

· bfunc.f90:

- generate two-body phase space with decays: ph2dcy
 - The implementation of the variable transformations in the previous pages is included in this subroutine. Please check the details.
- You can include kinematical cuts in "bfunc.f90", which simulate the detector acceptance.

Summary

- ·We already have many excellent software tools for physics studies. They have much automatic functionality, which helps your analysis.
- ·Still, I want you to understand what procedures/technologies such software uses, not just using it
- ·I hope my examples help you experience the MC integration and the calculation of cross-sections and understand the calculation processes.

Summary

- ·If possible, try to modify these codes and test them by yourself:
 - check Ncall dependence of integration accuracies,
 - apply kinematical cuts to final state particles,
 - try other physics processes which you have some interest
 - etc.